bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明
关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明
对于第i项,假设为5
x^5=x^0*x^5
x^5=x^1*x^4
x^5=x^2*x^3
........
也就是说从k个这样(1+x+x^2+x^3+x^4+...)的式子中,每个式子取出一项出来
让其相乘,得到的x的指数为5.
所取出来看项,设为y,y的取值范围从0....(也就是数字1,即x^0)....到无限大,则归于
(y1+y2+y3+.....+yk)=i这个方程有多少组解
其中0<=yi<=i
通俗理解就是将数字i分成k份之和,有多少种分法
这个可用经典插板法进行求解
例如
(x+y+z)^7
有C(7+3-1,3-1)=C(9,2)种解
于是对于(y1+y2+y3+.....+yk)=i有C(i+k-1,k-1)组解
应用:
zz:https://www.cnblogs.com/maijing/p/4879012.html
先搞出各种食物的生成函数:

更详细的看这个:https://blog.csdn.net/wu_tongtong/article/details/78856565
bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明的更多相关文章
- BZOJ3028 食物(生成函数)
显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+…… ...
- 2018.12.30 bzoj3028: 食物(生成函数)
传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21 ...
- 求方程x1+x2+x3=15的整数解的数目
求方程x1+x2+x3=15的整数解的数目要求0≤x1≤5,0≤x2≤6,0≤x3≤7.解:令N为全体非负整数解(x1,x2,x3),A1为其中x1≥6的解:y1=x1-6≥0的解:A2为其中x2≥7 ...
- 对于一般情况X1+X2+X3+……+Xn=m 的正整数解有 (m-1)C(n-1) 它的非负整数解有 (m+n-1)C(n-1)种
对于一般情况X1+X2+X3+……+Xn=m 的正整数解有 (m-1)C(n-1) 它的非负整数解有 (m+n-1)C(n-1)种
- BZOJ3028 食物 (生成函数)
首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...
- bzoj3028食物
http://www.lydsy.com/JudgeOnline/problem.php?id=3028 好吧,这是我第一道生成函数的题目. 先搞出各种食物的生成函数: 汉堡:$1+x^2+x^4+. ...
- BZOJ3028食物——生成函数+泰勒展开
题目描述 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些 ...
- BZOJ3028 食物 和 LOJ6261 一个人的高三楼
总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...
- BZOJ3028: 食物
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3028 题解:列出母函数乘起来化简之后再展开,用插板法即可. 代码: #include<c ...
随机推荐
- Wannafly挑战赛22 B 字符路径 ( 拓扑排序+dp )
链接:https://ac.nowcoder.com/acm/contest/160/B 来源:牛客网 题目描述 给一个含n个点m条边的有向无环图(允许重边,点用1到n的整数表示),每条边上有一个字符 ...
- 批量修改zencart型号:品牌名称+型号格式
批量修改zencart型号:品牌名称+型号格式 将下面代码保存为zc_change_model.php,上传到网站根目录运行即可,操作前先备份数据库 <?php /*** 批量修改zencart ...
- dijkstra算法之优先队列优化
github地址:https://github.com/muzhailong/dijkstra-PriorityQueue 1.题目 分析与解题思路 dijkstra算法是典型的用来解决单源最短路径的 ...
- java<T>泛型
泛型 1.泛型的概述 在JDK1.5之前,把对象放入到集合中,集合不会记住元素的类型,取出时,全都变成Object类型.泛型是jdk5引入的类型机制,就是将类型参数化,它是早在1999年就制定的jsr ...
- 【GDOI2017模拟12.9】最近公共祖先
题目 分析 首先,将这些节点按dfs序建一棵线段树. 因为按dfs序,所以在同一子树上的节点会放在线段树相邻的位置. 发现,对于一个位置x,它的权值只会对以x为根的子树造成影响. 当修改x时,用w[x ...
- vue和electron做的聊天应用表情包处理
表情包库: https://apps.timwhitlock.info/emoji/tables/unicode <template> <div @click.stop> &l ...
- layui 中的$符号有可以和jquery冲突,var & = layui.$
在项目上使用到了滚动条插件,但是使用var & = layui.$,会影响到插件. 错误提示: Uncaught TypeError: $(...).perfectScrollbar is n ...
- The Preliminary Contest for ICPC Asia Shanghai 2019 B. Light bulbs
题目:https://nanti.jisuanke.com/t/41399 思路:差分数组 区间内操作次数为奇数次则灯为打开状态 #include<bits/stdc++.h> using ...
- Spring Data Jpa (五)@Entity实例里面常用注解详解
详细介绍javax.persistence下面的Entity中常用的注解. 虽然Spring Data JPA已经帮我们对数据的操作封装得很好了,约定大于配置思想,帮我们默认了很多东西.JPA(Jav ...
- 20175221 《Java程序设计》第10周学习总结
20175221 <Java程序设计>第10周学习总结 教材学习内容总结 第十二章主要内容有: 进程与线程 进程是程序的一次动态执行过程,它对应了从代码加载.执行至执行完毕的一个完整过 ...