传送门

##解题思路
  首先给出的树形态没用,因为除根结点外每个点只有一个父亲,它只需要保证和父亲颜色不同即可。设$f(k)$表示至多染了$k$种颜色的方案,那么$f(k)=(k-1)^{(n-1)}*k$,而我们要求的是恰好染$k$种颜色的方案数,设其为$g(k)$,易得

\[
g(k)=\sum\limits_{i=1}^k\dbinom{k}{i}f(i)
\]

发现这个可以二项式反演

\[
g(k)=\sum\limits_{i=1}^k(-1)^{k-i}\dbinom{n}{i}f(i)
\]

然后就可以直接算了。

##代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm> using namespace std;
const int N=2505;
const int MOD=1e9+7;
typedef long long LL; inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,k,f[N],ans,fac[N],inv[N]; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
} inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
} int main(){
n=rd(),k=rd();int x;fac[0]=1;
for(int i=1;i<n;i++) x=rd();
for(int i=1;i<=k;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[k]=fast_pow(fac[k],MOD-2);
for(int i=k-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
for(int i=2;i<=k;i++) f[i]=(LL)fast_pow(i-1,n-1)*i%MOD;
for(int i=1;i<=k;i++){
if(!((k-i)&1)) ans=ans+(LL)C(k,i)*f[i]%MOD;
else ans=ans+(MOD-(LL)C(k,i)*f[i]%MOD);
ans%=MOD;
}
printf("%d\n",ans);
return 0;
}

CF gym 101933 K. King's Colors(二项式反演)的更多相关文章

  1. CF gym 101933 K King's Colors —— 二项式反演

    题目:http://codeforces.com/gym/101933/problem/K 其实每个点的颜色只要和父亲不一样即可: 所以至多 i 种颜色就是 \( i * (i-1)^{n-1} \) ...

  2. CF gym101933 K King's Colors——二项式反演

    题目:http://codeforces.com/gym/101933/problem/K 每个点只要和父亲不同色就行.所以 “至多 i 种颜色” 的方案数就是 i * ( i-1 )n-1 . #i ...

  3. Codeforces Gym 100851 K King's Inspection ( 哈密顿回路 && 模拟 )

    题目链接 题意 : 给出 N 个点(最多 1e6 )和 M 条边 (最多 N + 20 条 )要你输出一条从 1 开始回到 1 的哈密顿回路路径,不存在则输出 " There is no r ...

  4. Gym 101933

    Gym 101933 B. Baby Bites水题直接模拟即可 #include <cstdio> #include <cstring> #include <queue ...

  5. Gym .101933 Nordic Collegiate Programming Contest (NCPC 2018) (寒假gym自训第四场)

    (本套题算是比较温和吧,就是罚时有点高. B .Baby Bites 题意:给出一个婴儿给出的数组,有一些数字听不清楚,让你还原,问它是否是一个从1开始的一次增加的数组. 思路:从左往右依次固定,看是 ...

  6. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  7. BZOJ 2839: 集合计数(二项式反演)

    传送门 解题思路 设\(f(k)\)为交集元素个数为\(k\)的方案数.发现我们并不能直接求出\(f(k)\),就考虑容斥之类的东西,容斥首先要扩大限制,再设\(g(k)\)表示至少有\(k\)个交集 ...

  8. NOI Online 游戏 树形dp 广义容斥/二项式反演

    LINK:游戏 还是过于弱鸡 没看出来是个二项式反演,虽然学过一遍 但印象不深刻. 二项式反演:有两种形式 一种是以恰好和至多的转换 一种是恰好和至少得转换. 设\(f_i\)表示至多的方案数 \(g ...

  9. CF Gym101933K King's Colors

    题目分析 题目要求在树上涂上恰好\(K\)种颜色的方案数. 设\(f(k)\)表示恰好涂上\(k\)种颜色的方案数(答案即为\(f(K)\)). 设\(g(k)\)表示至多涂上\(k\)种颜色的方案数 ...

随机推荐

  1. fedora23下编译安装OpenCV-3.1.0

    所需安装环境 1.安装编译环境 $ sudo dnf install gcc gcc-c++ ncurses-devel cmake 2.安装gtk+2.x $ sudo dnf install gt ...

  2. LOJ 3093 「BJOI2019」光线——数学+思路

    题目:https://loj.ac/problem/3093 考虑经过种种反射,最终射下去的光线总和.往下的光线就是这个总和 * a[ i ] . 比如只有两层的话,设射到第二层的光线是 lst ,那 ...

  3. element table 通过selection-change选中的索引删除

    <el-table :row-class-name="tableRowClassName" @selection-change="handleSelectionCh ...

  4. [CSP-S模拟测试]:gcd(莫比乌斯反演)

    题目描述 有$n$个正整数$x_1\sim x_n$,初始时状态均为未选.有$m$个操作,每个操作给定一个编号$i$,将$x_i$的选取状态取反.每次操作后,你需要求出选取的数中有多少个互质的无序数对 ...

  5. ip地址与子网掩码----基础知识

    前言 IP地址有三种基本类型,由网络号的第一组数字来表示. A类地址的第一组数字为1-126. B类地址的第一组数字为128-191. C类地址的第一组数字为192-223. 注:数字0和 127不作 ...

  6. Activator.CreateInstance with parameters

    https://docs.microsoft.com/en-us/dotnet/api/system.activator.createinstance?view=netframework-4.8#Sy ...

  7. 专家揭秘:STM32启动过程全解

    电子发烧友网核心提示:本文主要阐述了STM32启动过程全面解析,包括启动过程的介绍.启动代码的陈列以及深入解析. 相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方 ...

  8. (67) c# 序列化

    二进制序列化器 xml序列化器 数据契约序列化器

  9. 如何使用iText制作中文PDF

    1. 下载itextpdf.jar 基础包:http://jaist.dl.sourceforge.net/project/itext/iText/iText5.5.2/itext-5.5.2.zip ...

  10. VS2017/VS2019 git Authentication failed for "XXXXXXXXXx"

    解决办法: 控制面板,凭证管理==>删掉 对应代码仓库地址的凭证.删掉,是删掉.因为我更新了还是没有用.