bzoj1877
1877: [SDOI2009]晨跑
Time Limit: 4 Sec Memory Limit: 64 MB
Submit: 2660 Solved: 1424
[Submit][Status][Discuss]
Description
Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑、仰卧起坐等 等,不过到目前为止,他
坚持下来的只有晨跑。 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一
个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交。Elaxia每天从寝室出发 跑到学校,保证寝室
编号为1,学校编号为N。 Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以
在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝室和学校不算十字路 口。Elaxia耐力不太好,
他希望在一个周期内跑的路程尽量短,但是又希望训练周期包含的天 数尽量长。 除了练空手道,Elaxia其他时间
都花在了学习和找MM上面,所有他想请你帮忙为他设计 一套满足他要求的晨跑计划。
Input
第一行:两个数N,M。表示十字路口数和街道数。
接下来M行,每行3个数a,b,c,表示路口a和路口b之间有条长度为c的街道(单向)。
N ≤ 200,M ≤ 20000。
Output
两个数,第一个数为最长周期的天数,第二个数为满足最长天数的条件下最短的路程长 度。
Sample Input
7 10
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
2 5 5
3 6 6
5 7 1
6 7 1
Sample Output
2 11
对于每个路口,限制只能到一次。那么把每个路口拆为入点和出点,除1和n外,入点->出点费用0容量1,1,n入点->出点费用0容量inf。按照输入建边u出->v1入费用w容量1。跑最小费用即可。
/*
很假的拆点费用流。
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
#define ll long long
#define N 405
using namespace std;
int n,m,tot,S,T,hd[N],pre[N],d[N],vis[N],a[N];
struct edge{int u,w,v,next,cap;}e[N*N*2];
void adde(int u,int v,int w,int c){
e[tot].v=v;
e[tot].u=u;
e[tot].next=hd[u];
e[tot].cap=c;
e[tot].w=w;
hd[u]=tot++;
} bool spfa(int &flow,int &cost){
memset(d,0x3f,sizeof(d));
memset(pre,-1,sizeof(pre));
queue<int>q;q.push(S);d[S]=0;a[S]=inf;
while(!q.empty()){
int u=q.front();q.pop();
vis[u]=0;
for(int i=hd[u];~i;i=e[i].next){
int v=e[i].v;
if(e[i].cap&&d[v]>d[u]+e[i].w){
d[v]=d[u]+e[i].w;
pre[v]=i;
a[v]=min(e[i].cap,a[u]);
if(vis[v])continue;
vis[v]=1;q.push(v);
}
}
}
if(d[T]==inf)return 0;
flow+=a[T];cost+=a[T]*d[T];
int u=T;
while(u!=S){
e[pre[u]].cap-=a[T];
e[pre[u]^1].cap+=a[T];
u=e[pre[u]].u;
}
return 1;
}
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
#endif
memset(hd,-1,sizeof(hd));
scanf("%d%d",&n,&m);
S=1;T=n*2;
for(int i=1;i<=m;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
adde(a+n,b,c,1);adde(b,a+n,-c,0);
// printf("%d %d %d\n",a+n,b,inf);
}
adde(S,S+n,0,inf);adde(S+n,S,0,0);//printf("%d %d %d\n",S,S+n,inf);
adde(T-n,T,0,inf);adde(T,T-n,0,0);//printf("%d %d %d\n",T,T+n,inf);
for(int i=2;i<n;i++)adde(i,i+n,0,1),adde(i+n,i,0,0)/*,printf("%d %d %d\n",i,i+n,1)*/;
int flow=0,cost=0;
while(spfa(flow,cost));
printf("%d %d",flow,cost);
return 0;
}
bzoj1877的更多相关文章
- 【BZOJ1877】晨跑(费用流)
[BZOJ1877]晨跑(费用流) 题面 Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他 坚持下来的只有晨跑. 现在 ...
- 【BZOJ1877】[SDOI2009]晨跑 最小费用最大流
[BZOJ1877][SDOI2009]晨跑 Description Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现 ...
- BZOJ-1877 晨跑 最小费用最大流+拆点
其实我是不想做这种水题的QWQ,没办法,剧情需要 1877: [SDOI2009]晨跑 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 1704 Solve ...
- bzoj1877: [SDOI2009]晨跑
挺裸的最小费用最大流... #include<cstdio> #include<queue> #include<cstring> #include<iostr ...
- [BZOJ1877][SDOI2009]SuperGCD
题目大意 求两个个高精度数的gcd 题目解析 在学习gcd的时候,书上就记载了"更相减损术"这一方法 基于这种方法,我们进行优化,使得我们能快速求出两个大数的gcd 对于 \(a, ...
- 【bzoj1877】[SDOI2009]晨跑 费用流
题目描述 Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街 ...
- BZOJ1877:[SDOI2009]晨跑——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1877 https://www.luogu.org/problemnew/show/P2153 Ela ...
- 【费用流】BZOJ1877[SDOI2009]-晨跑
[题目大意] Elaxia每天从寝室出发跑到学校,保证寝室编号为1,学校编号为N. Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以在一个周期内,每天的晨跑路线都不会 ...
- BZOJ1877 [SDOI2009]晨跑 【费用流】
题目 Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑.仰卧起坐等 等,不过到目前为止,他 坚持下来的只有晨跑. 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道 ...
随机推荐
- JAVA中if多分支和switch的优劣性。
Switch多分支语句switch语句是多分支选择语句.常用来根据表达式的值选择要执行的语句.例如,在某程序中,要求将输入的或是获取的用0-6代表的星期,转换为用中文表示的星期.该需求通过伪代码描述的 ...
- UDP协议实现客户服务器数据交互
UDP协议实现客户服务器数据交互 按照往常一样将今天自己写的题目答案写在了博客上习题:客户端循环发送消息给服务端,服务端循环接收,并打印出来,直到收到Bye就退出程序. package network ...
- C# 使用 GDI+ 给图片添加文字,并使文字自适应矩形区域
需求 需求是要做一个编辑文字的页面.用户在网页端写文字,文字区域是个矩形框,用户可以通过下方的拖动条调节文字大小. 如下图: 提交数据的时候前端传文字区域的左上角和右下角定位给后台.因为前端的字体大小 ...
- 阿里云API网关(17)签名算法
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- SpringCloud的服务消费者 (一):(rest+ribbon)访问注册的微服务
采用Ribbon或Feign方式访问注册到EurekaServer中的微服务.1.Ribbon实现了客户端负载均衡,Feign底层调用Ribbon2.注册在EurekaServer中的微服务api,不 ...
- Spring Security 入门(1-8)Spring Security 的配置文件举例
- MSSQl 事务的使用
事务具有以下四个特性: 1.原子性 事务的原子性是指事务中包含的所有操作要么全做,要么全不做. 2.一致性 在事务开始以前,数据库处于一致性的状态,事务结束后,数据库也必须处于一致性状态. 3.隔离性 ...
- Android开发——发布第三方库到JitPack上
前言: 看到大神们的写的第三方控件,比较好用,我们使用的时候直接是在gradle上加上代码就可以使用了,现在到我们写了一个第三方控件,想要别人使用的时候也是直接在gradle加上相关的代码就可以用了, ...
- [转]安卓新一代多渠道打包工具Walle 解决渠道包V2签名问题
转自https://www.jianshu.com/p/572b59829a08 为什么要打多个渠道的包? 大家都知道,android应用商店大大小小有几百个,作为一个有志向的app,就需要做到统计各 ...
- Python open()函数文件打开、读、写操作详解
一.Python open()函数文件打开操作 打开文件会用到open函数,标准的python打开文件语法如下:open(name[,mode[,buffering]])open函数的文件名是必须的, ...