【BZOJ2998】Problem A(动态规划)

题面

BZOJ

题解

一个人的成绩范围可以确定为一个区间

这样就变成了

选择若干区间,不重合,

每个区间有个权值,求最大权值和

这样就可直接\(dp\)了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 120000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int tot,ans,Ans,n;
int f[MAX];
map<pair<int,int>,int> M;
vector<int> G[MAX];
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
int a=read(),b=read();
int l=a+1,r=n-b;
if(l>r)continue;
M[make_pair(l,r)]++;
if(M[make_pair(l,r)]==1)G[r].push_back(l);
}
for(int i=1;i<=n;++i)
{
f[i]=f[i-1];
for(int j=0;j<G[i].size();++j)
f[i]=max(f[i],f[G[i][j]-1]+min(i-G[i][j]+1,M[make_pair(G[i][j],i)]));
}
printf("%d\n",n-f[n]);
return 0;
}

【BZOJ2998】Problem A(动态规划)的更多相关文章

  1. CF954F Runner's Problem(动态规划,矩阵快速幂)

    CF954F Runner's Problem(动态规划,矩阵快速幂) 题面 CodeForces 翻译: 有一个\(3\times M\)的田野 一开始你在\((1,2)\)位置 如果你在\((i, ...

  2. Problem C: 动态规划基础题目之数字三角形

    Problem C: 动态规划基础题目之数字三角形 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 208  Solved: 139[Submit][Sta ...

  3. 背包问题(Knapsack problem)采用动态规划求解

    问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品,假设是水果好了,水果的编号.单价与重量如下所示:0李子4KGNT$45001苹果5KGNT$57002橘子2 ...

  4. BZOJ 2298: [HAOI2011]problem a 动态规划

    2298: [HAOI2011]problem a Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  5. 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)

    洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...

  6. luogu 2519 [HAOI2011]problem a 动态规划+树状数组

    发现每一次 $[b[i]+1,n-a[i]]$ 这个区间的分数必须相同,否则不合法. 而一个相同的区间 $[l,r]$ 最多只能出现区间长度次. 于是,就得到了一个 $dp:$ 将每一种区间的出现次数 ...

  7. 算法导论-动态规划(最长公共子序列问题LCS)-C++实现

    首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2  ...

  8. 【POJ - 1661】Help Jimmy (动态规划)

    Help Jimmy Descriptions: "Help Jimmy" 是在下图所示的场景上完成的游戏. 场景中包括多个长度和高度各不相同的平台.地面是最低的平台,高度为零,长 ...

  9. 第六届福建省大学生程序设计竞赛(FZU2213—FZU2221)

    from:piaocoder Common Tangents(两圆之间的公公切线) 题目链接: http://acm.fzu.edu.cn/problem.php?pid=2213 解题思路: 告诉你 ...

  10. 2014 Super Training #2 F The Bridges of Kolsberg --DP

    原题:UVA 1172  http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

随机推荐

  1. DataGrid 拖动 附加属性类

    项目需要实现一个DataGrid拖动排序,于是参考网上一些资源然后,修改了下实现了一个附加属性类,如下 使用方法 <DataGrid x:Name="shareGrid" t ...

  2. MySQL中order by排序时,数据存在null咋办

    order by排序是最常用的功能,但是排序有时会遇到数据为空null的情况,这样排序就会乱了,这里以MySQL为例,记录我遇到的问题和解决思路. 问题: 网页要实现table的行鼠标拖拽排序,我用A ...

  3. LNMP搭建02 -- 编译安装Nginx

    [编译安装Nginx]   为了顺利安装Nginx,先安装下面这些: [CentOS 编译 nginx 前要做的事情] yum install gcc gcc-c++ kernel-devel yum ...

  4. Spring Data与elasticsearch版本对应关系

  5. kaggle-titanic 数据分析过程

    1. 引入所有需要的包 # -*- coding:utf-8 -*- # 忽略警告 import warnings warnings.filterwarnings('ignore') # 引入数据处理 ...

  6. mybatis3:Invalid bound statement (not found)

    最近在玩ssm框架搭建,突然发现最后的时候mybaits和SpringMvc进行整合的时候出现错误 Invalid bound statement (not found) 这个错误有可能出现在以下几个 ...

  7. 源码编译安装Apache-附一键部署脚本

    1.进入apache官网https://www.apache.org/,点击Download 2.如图选择 3.选择httpd 4.下载两个包,2.2为CentOS6使用,2.4为CentOS7使用 ...

  8. 排序算法整理(python version)

    import random import time def bubble_sort(a): n=len(a) while n>1: for i in range(n-1): if a[i]> ...

  9. 重磅︱文本挖掘深度学习之word2vec的R语言实现

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:2013年末,Google发布的 w ...

  10. 高级DirectDraw

    使用高彩模式 上一章中说了可以用16位的色彩深度,但是16位的色彩深度的数据表示模式可以有两种:Alpha.5.5.5(or X.5.5.5) 和 5.6.5(这是16位色彩最常用的).对于使用哪种1 ...