题目描述

Hzwer的跳跳棋是在一条数轴上进行的。棋子只能摆在整点上。每个点不能摆超过一个棋子。

某一天,黄金大神和cjy用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置。他们要通过最少的跳动把它们的位置移动成x,y,z。(棋子是没有区别的)

跳动的规则很简单,任意选一颗棋子,对一颗中轴棋子跳动。跳动后两颗棋子距离不变。一次只允许跳过1颗棋子。

写一个程序,首先判断是否可以完成任务。如果可以,输出最少需要的跳动次数。

输入

第一行包含三个整数,表示当前棋子的位置a b c。(互不相同)

第二行包含三个整数,表示目标位置x y z。(互不相同)

输出

如果无解,输出一行NO。

如果可以到达,第一行输出YES,第二行输出最少步数。

样例输入

1 2 3
0 3 5

样例输出

YES
2

提示

【范围】

20% 输入整数的绝对值均不超过10

40% 输入整数的绝对值均不超过10000

100% 绝对值不超过10^9

最近公共祖先

对于一个状态,例如2 3 7

中间可以往两侧跳,即2 3 7->1 2 7 / 2 3 7->2 7 11

两侧仅有靠近中间的能往中间跳,即2 3 7->3 4 7

那么所有的状态就能表示为一棵二叉树,第一种情况为其两个儿子,第二种为其父亲

但其实第一种情况并不重要,因为lca是一直找父亲,显然,根节点的三个棋是一个等差数列

问题转换为给定树上的两个结点,求其距离。如果两个节点

我们发现若记前两个数差t1,后两个数差t2,不妨设t1<t2

则左边最多往中间跳(t2-1)/t1次

然后只能右边往中间跳,是一个辗转相除的过程,即在logK的时间内我们可以用这种方法得到某个结点它向上K次后的结点,或者根节点,同时还可以顺便算下深度

很明显,如果初始情况和最终情况的根节点不一样,那么一定无解

那么只要求始终两个状态的深度d1,d2,将较深的调整到同一深度

然后二分/倍增求与lca的深度差x

ans=2*x+abs(d1-d2)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
struct xxx{
int c[];
}a,b;
int dep;
xxx zou(xxx aa,int x)
{
xxx xx;
int t1=aa.c[]-aa.c[],t2=aa.c[]-aa.c[];
if(t1==t2)return aa;
if(t1<t2)
{
int yy=min(x,(t2-)/t1);dep+=yy;x-=yy;
xx.c[]=aa.c[]+yy*t1;xx.c[]=aa.c[]+yy*t1;xx.c[]=aa.c[];
}
if(t1>t2)
{
int yy=min(x,(t1-)/t2);dep+=yy;x-=yy;
xx.c[]=aa.c[];xx.c[]=aa.c[]-yy*t2;xx.c[]=aa.c[]-yy*t2;
}
if(!x)return xx;
else return zou(xx,x);
}
bool bj(xxx a,xxx b)
{
for(int i=;i<=;i++)if(a.c[i]!=b.c[i])return ;
return ;
}
int main()
{
int ans=;
for(int i=;i<=;i++)scanf("%d",&a.c[i]);
for(int i=;i<=;i++)scanf("%d",&b.c[i]);
sort(a.c+,a.c+);sort(b.c+,b.c+);
xxx xx1=zou(a,);int dep1=dep;dep=;
xxx xx2=zou(b,);int dep2=dep;dep=;
if(!bj(xx1,xx2)){puts("NO");return ;}
if(dep1>dep2){ans+=dep1-dep2;a=zou(a,dep1-dep2);dep1=dep2;}
if(dep1<dep2){ans+=dep2-dep1;b=zou(b,dep2-dep1);dep2=dep1;}
int l=,r=dep1+;
while(l<r)
{
int mid=(l+r)>>;
if(bj(zou(a,mid),zou(b,mid)))r=mid;
else l=mid+;
}
puts("YES");
printf("%d",ans+*l);
return ;
}

[9018_1563][bzoj_2144]跳跳棋的更多相关文章

  1. 跳跳棋(9018_1563)(BZOJ_2144)

    题目: Hzwer的跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 某一天,黄金大神和cjy用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.他们要 ...

  2. 【LCA】bzoj 2144:跳跳棋

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 248  Solved: 121[Submit][Status][Discuss] ...

  3. bzoj2144 【国家集训队2011】跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  4. [BZOJ 2144]跳跳棋

    Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...

  5. BZOJ2144跳跳棋——LCA+二分

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的 游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...

  6. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

  7. P1852 [国家集训队]跳跳棋

    P1852 [国家集训队]跳跳棋 lca+二分 详细解析见题解 对于每组跳棋,我们可以用一个三元组(x,y,z)表示 我们发现,这个三元组的转移具有唯一性,收束性 也就是说,把每个三元组当成点,以转移 ...

  8. 【洛谷】1852:[国家集训队]跳跳棋【LCA】【倍增?】

    P1852 [国家集训队]跳跳棋 题目背景 原<奇怪的字符串>请前往 P2543 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个 ...

  9. 【BZOJ 2144】 2144: 跳跳棋 (倍增LCA)

    2144: 跳跳棋 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 642  Solved: 307 Description 跳跳棋是在一条数轴上进行的 ...

随机推荐

  1. C# 在窗口绘制图形(打点、画圆、画线)

    需要包含命名空间 using System.Drawing; 画图前需要先创建画板 void Display() { Graphics g = this.CreateGraphics(); //创建画 ...

  2. awk命令例子详解

    awk -F: '{print "Number of dields: "NF}' passwd 字段分隔符设为冒号,所以每条记录的字段数变成7: awk  '{print &quo ...

  3. [CodeForces940E]Cashback(set+DP)

    Description Since you are the best Wraith King, Nizhniy Magazin «Mir» at the centre of Vinnytsia is ...

  4. Black Box POJ1442

    Description Our Black Box represents a primitive database. It can save an integer array and has a sp ...

  5. 笔记-docker-2安装(centos6.5环境)

    笔记-docker-2安装(centos6.5环境) 1.      centos6.5安装docker 1.1.    升级内核 安装docker,官方文档要求linux kernel至少3.8以上 ...

  6. Web安全1&沙箱隔离

    1.web安全 Web安全的本质是信任问题 •由于信任,正常处理用户恶意的输入导致问题的产生 •非预期的输入(就是不是程序员预期的客户的输入) 安全是木桶原理,短的那块板决定的木桶世纪能装多少水,同样 ...

  7. The GNU C Library

    Any Unix-like operating system needs a C library: the library which defines the ``system calls'' and ...

  8. vue理解$nextTick

    首先要明确: Vue 实现响应式并不是数据发生变化之后 DOM 立即变化,而是按一定的策略进行 DOM 的更新. $nextTick 是在下次 DOM 更新循环结束之后执行延迟回调,在修改数据之后使用 ...

  9. Django基本使用

    目录 1 安装 1.1 安装pip 1.2 安装django 2 创建项目 2.1 使用 管理工具 django-admin.py 来创建 PyLearn 项目: 2.2 启动服务 本文章以下所有列子 ...

  10. mac虚拟机上(centos系统)设置联网第二种方式

    这种方式简单,不容易出错,用的桥接的方式. 这样的安装的centos会得到ip地址 然后编辑一下网卡配置,使其变为静态得ip 输入命令 # vi /etc/sysconfig/network-scri ...