题目描述
三国时期,南蛮王孟获叛乱,诸葛亮起兵平乱。
当深入南蛮之地时,遇当地人绘得地图,发现各地分别由各个寨主据守,若诸葛亮想兵分多路进军,尽快占领各个山寨(必须占领所有山寨),并且最终所有士兵都汇聚到孟获所在山寨,若给你一次穿越的机会,你用程序告诉诸葛亮最少需要多少天才能完成这个任务。假设军队足够多,各分队行军速度一样,且诸葛亮神机妙算,到达每个山寨即日可以攻克。

输入
首先是一个正整数T,接下来是T组测试数据,每组数据第一行是两个整数n,m(2=<n<=1000,1=<m<=10000),分别表示山寨数量和总边数,山寨编号0,1,2,3….n-1
接下来m行,每行三个整数i,j,k(0=<i,j<n,k<=10^4),分别表示山寨i和山寨j之间有一条路,在这条路上需要行军k天,接下来一行两个整数s,t(0<=s,t<=n-1),分别表示诸葛亮所在部队的起点和孟获山寨所在终点的编号

输出
对每组数据输出一个整数,表示诸葛亮的士兵占领所有山寨并汇聚到孟获所在山寨所需要的最少天数,每个输出独占一行

样例输入
2
5 6
0 1 2
1 2 2
3 1 2
4 0 3
3 2 3
3 4 1
4 3
5 5
1 0 1
1 2 3
1 3 3
4 2 2
3 4 1
4 2

样例输出
7
9

每支小分队都一个任务,从起点出发占领其他结点中的某一个点(每支小分队占的点都不同),占领该点立刻向终点出发,最后枚举所有小分队到达终点的时间,求最大值即可=.=

第一次想的时候想错了 我以为是从起点来一次最短路 找最大值 再从终点来一次最短路 找最大值 两个最大值相加 但样例没过=.=

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# include <queue>
# define LL long long
using namespace std ; const int INF=0x3f3f3f3f;
const int MAXN=;
struct qnode
{
int v;
int c;
qnode(int _v=,int _c=):v(_v),c(_c){}
bool operator <(const qnode &r)const
{
return c>r.c;
}
};
struct Edge
{
int v,cost;
Edge(int _v=,int _cost=):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
bool vis[MAXN];
int ds[MAXN];
int de[MAXN];
int n ;
void Dijkstra(int start , int dist[])//点的编号从1开始
{
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=INF;
priority_queue<qnode>que;
while(!que.empty())que.pop();
dist[start]=;
que.push(qnode(start,));
qnode tmp;
while(!que.empty())
{
tmp=que.top();
que.pop();
int u=tmp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=;i<E[u].size();i++)
{
int v=E[tmp.v][i].v;
int cost=E[u][i].cost;
if(!vis[v]&&dist[v]>dist[u]+cost)
{
dist[v]=dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
}
void addedge(int u,int v,int w)
{
E[u].push_back(Edge(v,w));
} int main ()
{
//freopen("in.txt","r",stdin) ;
int m ;
int T ;
scanf("%d" , &T) ;
while (T--)
{
scanf("%d %d" , &n , &m) ;
int u , v , w ;
int i , j ;
for(i=;i<=n;i++)
E[i].clear(); while(m--)
{
scanf("%d%d%d" , &u , &v , &w) ;
addedge(u+,v+,w) ;
addedge(v+,u+,w) ;
}
int s , e ;
scanf("%d %d" , &s , &e) ;
Dijkstra(s+,ds) ;
Dijkstra(e+,de) ;
int Max = ;
for(i=;i<=n;i++)
if (ds[i] + de[i] > Max)
Max = ds[i] + de[i] ; printf("%d\n" , Max) ;
} return ;
}

G 最短路的更多相关文章

  1. Storyboards Tutorial 03

    这一节主要介绍segues,static table view cells 和 Add Player screen 以及 a game picker screen. Introducing Segue ...

  2. 文件图标SVG

    ​<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink ...

  3. G. 神圣的 F2 连接着我们 线段树优化建图+最短路

    这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...

  4. POJ 2240 && ZOJ 1082 Arbitrage 最短路,c++ stl pass g++ tle 难度:0

    http://poj.org/problem?id=2240 用log化乘法为加法找正圈 c++ 110ms,g++tle #include <string> #include <m ...

  5. 【求出所有最短路+最小割】【多校第一场】【G题】

    题意 A从1要追在N的 B 只能走最短的路 问B最少切断多少条路可以让A不能过来 问B最多切断多少条路A还是能过来 对于1 求出1到N的所有最短路的路径,对其求最小割 对于2 求出长度最小的最短路即可 ...

  6. [kuangbin带你飞]专题四 最短路练习 G MPI Maelstrom

    #include<iostream> #include<cstring> #include<algorithm> #include<iomanip> # ...

  7. ACM International Collegiate Programming Contest, Egyptian Collegiate Programming Contest (ECPC 2015) G. It is all about wisdom (二分,单源最短路)

    题意:有\(n\)个点,\(m\)条边,只有当你的智力值大于这条边的\(w\)才能走,问在花费不超过\(k\)的情况下,从\(1\)走到\(n\)的所需的最小智力值. 题解:这题比赛为什么没想出来呢? ...

  8. 洛谷 P5837 [USACO19DEC]Milk Pumping G (单源最短路,dijkstra)

    题意:有一\(n\)个点,\(m\)条边的双向图,每条边都有花费和流量,求从\(1\)~\(n\)的路径中,求\(max\frac{min(f)}{\sum c}\). 题解:对于c,一定是单源最短路 ...

  9. P3008 [USACO11JAN]Roads and Planes G (最短路+拓扑排序)

    该最短路可不同于平时简单的最短路模板. 这道题一看就知道用SPFA,但是众所周知,USACO要卡spfa,所以要用更快的算法. 单向边不构成环,双向边都是非负的,所以可以将图分成若干个连通块(内部只有 ...

随机推荐

  1. String args[] 和 String[] args 有什么区别

    String args[] 和 String[] args 有什么区别 public static void main(String args[]) 或 public static void main ...

  2. (转)远程连接webservice遇到无法访问的问题解决办法

    原帖:http://stu-xu.i.sohu.com/blog/view/170429191.htm 如果在本地测试webservice可以运行,在远程却显示“测试窗体只能用于来自本地计算机的请求” ...

  3. 【bzoj3091】 城市旅行

    http://www.lydsy.com/JudgeOnline/problem.php?id=3091 (题目链接) 题意 给出一棵无根树,维护四个操作.link,cut,路径加法,路径期望查询. ...

  4. [SDOI2009]Bill的挑战——全网唯一 一篇容斥题解

    全网唯一一篇容斥题解 Description Solution 看到这个题,大部分人想的是状压dp 但是我是个蒟蒻没想到,就用容斥切掉了. 并且复杂度比一般状压低, (其实这个容斥的算法,提出来源于y ...

  5. 个推数据统计产品(个数)iOS集成实践

    最近业务方给我们部门提了新的需求,希望能一站式统计APP的几项重要数据.这次我们尝试使用的是个推(之前专门做消息推送的)旗下新推出的产品“个数·应用统计”,根据官方的说法,个推的数据统计产品通过专业的 ...

  6. harbor高可用集群配置

    目录 说明 双主复制 主从同步 双主复制说明 多harbor实例共享后端存储 方案说明 环境说明 配置说明 安装redis和mysql 导入registry数据库 配置harbor 挂载nfs目录 修 ...

  7. Spark记录-Scala数组/List/Map/Set

    import Array._ import scala.collection.mutable.Set object DataStructure { def main(args:Array[String ...

  8. bzoj千题计划277:bzoj4513: [Sdoi2016]储能表

    http://www.lydsy.com/JudgeOnline/problem.php?id=4513 f[i][0/1][0/1][0/1] 从高到低第i位,是否卡n的上限,是否卡m的上限,是否卡 ...

  9. 一个Zabbix agent配置多个Zabbix Server

    环境说明: 公司和政府合作的项目中,需要对服务器添加监控.政府方面已对服务部署了zabbix agent,实现了系统层面的基础监控:而对于公司而言,需要对服务器上的服务进行监控,故需在原有的zabbi ...

  10. javascript多种继承方式(函数式,浅复制,深复制,函数绑定和借用)

    函数式继承: var object = function (obj) { if (typeof Object.create !== 'undefined') { return Object.creat ...