spark的shuffle机制
对于大数据计算框架而言,Shuffle阶段的设计优劣是决定性能好坏的关键因素之一。本文将介绍目前Spark的shuffle实现,并将之与MapReduce进行简单对比。本文的介绍顺序是:shuffle基本概念,MapReduce Shuffle发展史以及Spark Shuffle发展史。
(1) shuffle基本概念与常见实现方式
shuffle,是一个算子,表达的是多对多的依赖关系,在类MapReduce计算框架中,是连接Map阶段和Reduce阶段的纽带,即每个Reduce Task从每个Map Task产生数的据中读取一片数据,极限情况下可能触发M*R个数据拷贝通道(M是Map Task数目,R是Reduce Task数目)。通常shuffle分为两部分:Map阶段的数据准备和Reduce阶段的数据拷贝。首先,Map阶段需根据Reduce阶段的Task数量决定每个Map Task输出的数据分片数目,有多种方式存放这些数据分片:
1) 保存在内存中或者磁盘上(Spark和MapReduce都存放在磁盘上);
2) 每个分片一个文件(现在Spark采用的方式,若干年前MapReduce采用的方式),或者所有分片放到一个数据文件中,外加一个索引文件记录每个分片在数据文件中的偏移量(现在MapReduce采用的方式)。
在Map端,不同的数据存放方式各有优缺点和适用场景。一般而言,shuffle在Map端的数据要存储到磁盘上,以防止容错触发重算带来的庞大开销(如果保存到Reduce端内存中,一旦Reduce Task挂掉了,所有Map Task需要重算)。但数据在磁盘上存放方式有多种可选方案,在MapReduce前期设计中,采用了现在Spark的方案(目前一直在改进),每个Map Task为每个Reduce Task产生一个文件,该文件只保存特定Reduce Task需处理的数据,这样会产生M*R个文件,如果M和R非常庞大,比如均为1000,则会产生100w个文件,产生和读取这些文件会产生大量的随机IO,效率非常低下。解决这个问题的一种直观方法是减少文件数目,常用的方法有:1) 将一个节点上所有Map产生的文件合并成一个大文件(MapReduce现在采用的方案),2) 每个节点产生{(slot数目)*R}个文件(Spark优化后的方案)。对后面这种方案简单解释一下:不管是MapReduce 1.0还是Spark,每个节点的资源会被抽象成若干个slot,由于一个Task占用一个slot,因此slot数目可看成是最多同时运行的Task数目。如果一个Job的Task数目非常多,限于slot数目有限,可能需要运行若干轮。这样,只需要由第一轮产生{(slot数目)*R}个文件,后续几轮产生的数据追加到这些文件末尾即可。因此,后一种方案可减少大作业产生的文件数目。
在Reduce端,各个Task会并发启动多个线程同时从多个Map Task端拉取数据。由于Reduce阶段的主要任务是对数据进行按组规约。也就是说,需要将数据分成若干组,以便以组为单位进行处理。大家知道,分组的方式非常多,常见的有:Map/HashTable(key相同的,放到同一个value list中)和Sort(按key进行排序,key相同的一组,经排序后会挨在一起),这两种方式各有优缺点,第一种复杂度低,效率高,但是需要将数据全部放到内存中,第二种方案复杂度高,但能够借助磁盘(外部排序)处理庞大的数据集。Spark前期采用了第一种方案,而在最新的版本中加入了第二种方案, MapReduce则从一开始就选用了基于sort的方案。
(2) MapReduce Shuffle发展史
【阶段1】:MapReduce Shuffle的发展也并不是一马平川的,刚开始(0.10.0版本之前)采用了“每个Map Task产生R个文件”的方案,前面提到,该方案会产生大量的随机读写IO,对于大数据处理而言,非常不利。
【阶段2】:为了避免Map Task产生大量文件,HADOOP-331尝试对该方案进行优化,优化方法:为每个Map Task提供一个环形buffer,一旦buffer满了后,则将内存数据spill到磁盘上(外加一个索引文件,保存每个partition的偏移量),最终合并产生的这些spill文件,同时创建一个索引文件,保存每个partition的偏移量。
(阶段2):这个阶段并没有对shuffle架构做调成,只是对shuffle的环形buffer进行了优化。在Hadoop 2.0版本之前,对MapReduce作业进行参数调优时,Map阶段的buffer调优非常复杂的,涉及到多个参数,这是由于buffer被切分成两部分使用:一部分保存索引(比如parition、key和value偏移量和长度),一部分保存实际的数据,这两段buffer均会影响spill文件数目,因此,需要根据数据特点对多个参数进行调优,非常繁琐。而MAPREDUCE-64则解决了该问题,该方案让索引和数据共享一个环形缓冲区,不再将其分成两部分独立使用,这样只需设置一个参数控制spill频率。
【阶段3(进行中)】:目前shuffle被当做一个子阶段被嵌到Reduce阶段中的。由于MapReduce模型中,Map Task和Reduce Task可以同时运行,因此一个作业前期启动的Reduce Task将一直处于shuffle阶段,直到所有Map Task运行完成,而在这个过程中,Reduce Task占用着资源,但这部分资源利用率非常低,基本上只使用了IO资源。为了提高资源利用率,一种非常好的方法是将shuffle从Reduce阶段中独立处理,变成一个独立的阶段/服务,由专门的shuffler service负责数据拷贝,目前百度已经实现了该功能(准备开源?),且收益明显,具体参考:MAPREDUCE-2354。
(3) Spark Shuffle发展史
目前看来,Spark Shuffle的发展史与MapReduce发展史非常类似。初期Spark在Map阶段采用了“每个Map Task产生R个文件”的方法,在Reduce阶段采用了map分组方法,但随Spark变得流行,用户逐渐发现这种方案在处理大数据时存在严重瓶颈问题,因此尝试对Spark进行优化和改进,相关链接有:External Sorting for Aggregator and CoGroupedRDDs,“Optimizing Shuffle Performance in Spark”,“Consolidating Shuffle Files in Spark”,优化动机和思路与MapReduce非常类似。
Spark在前期设计中过多依赖于内存,使得一些运行在MapReduce之上的大作业难以直接运行在Spark之上(可能遇到OOM问题)。目前Spark在处理大数据集方面尚不完善,用户需根据作业特点选择性的将一部分作业迁移到Spark上,而不是整体迁移。随着Spark的完善,很多内部关键模块的设计思路将变得与MapReduce升级版Tez非常类似。
spark的shuffle机制的更多相关文章
- 【Spark】Spark的Shuffle机制
MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性 ...
- 【Spark篇】---Spark中Shuffle机制,SparkShuffle和SortShuffle
一.前述 Spark中Shuffle的机制可以分为HashShuffle,SortShuffle. SparkShuffle概念 reduceByKey会将上一个RDD中的每一个key对应的所有val ...
- 研究一下Spark Hash Shuffle 和 SortShuffle 原理机制
研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shu ...
- Spark Shuffle机制详细源码解析
Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析: 1.Shuff ...
- 通过案例对 spark streaming 透彻理解三板斧之三:spark streaming运行机制与架构
本期内容: 1. Spark Streaming Job架构与运行机制 2. Spark Streaming 容错架构与运行机制 事实上时间是不存在的,是由人的感官系统感觉时间的存在而已,是一种虚幻的 ...
- 【Spark篇】---Spark中Shuffle文件的寻址
一.前述 Spark中Shuffle文件的寻址是一个文件底层的管理机制,所以还是有必要了解一下的. 二.架构图 三.基本概念: 1) MapOutputTracker MapOutputTracker ...
- Spark内部执行机制
Spark内部执行机制 1.1 内部执行流程 如下图1为分布式集群上spark应用程序的一般执行框架.主要由sparkcontext(spark上下文).cluster manager(资源管理器)和 ...
- Spark内存管理机制
Spark内存管理机制 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行 ...
- spark的shuffle和原理分析
概述 Shuffle就是对数据进行重组,由于分布式计算的特性和要求,在实现细节上更加繁琐和复杂. 在MapReduce框架,Shuffle是连接Map和Reduce之间的桥梁,Map阶段 ...
随机推荐
- Next generation sequencing (NGS)二代测序数据预处理与分析
二代测序原理: 1.DNA待测文库构建. 超声波把DNA打断成小片段,一般200--500bp,两端加上不同的接头2.Flowcell.一个flowcell,8个channel,很多接头3.桥式PCR ...
- git的命令详解
# git三个区 + 工作区: 写代码的地方 + 暂存区: 暂时存储代码 + 仓库区: 代码提交到了仓库区,就生成一条历史记录(版本) 工作区===> 暂存区 ===> 仓库区 # git ...
- 使用VNC连接管理VPS
本文基于:Kvm+Windows2008 VPS+VNCviewer 有时候遇上IP没设置好,IP被封,调整磁盘,重置windows系统密码等等使用基于VNC的控制台对VPS进行操作是非常方便的. 有 ...
- BZOJ 1969 航线规划 - LCT 维护边双联通分量
Solution 实际上就是查询 $u$ 到 $v$ 路径上 边双的个数 $ -1$. 并且题目仅有删边, 那么就离线倒序添边. 维护 边双 略有不同: 首先需要一个并查集, 记录 边双内的点. 在 ...
- C/C++常用预处理指令
预处理是在编译之前的处理,而编译工作的任务之一就是语法检查,预处理不做语法检查.预处理命令以符号“#”开头. 常用的预处理指令包括: 宏定义:#define 文件包含:#include 条件编译:#i ...
- LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖
6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- 让eclipse调试和豌豆荚并存
豌豆荚有一个设置 设置->高级设置->开发者模式 勾上开发者模式 确定. 你什么手机的驱动都不用安装了. 就可以直接使用豌豆荚,也可以使用eclipse进行调试.
- Python之路(第十二篇)程序解耦、模块介绍\导入\安装、包
一.程序解耦 解耦总的一句话来说,减少依赖,抽象业务和逻辑,让各个功能实现独立. 直观理解“解耦”,就是我可以替换某个模块,对原来系统的功能不造成影响.是两个东西原来互相影响,现在让他们独立发展:核心 ...
- angular2在双向数据绑定时[(ngModel)]无法使用的问题
angular2在双向数据绑定时[(ngModel)]无法使用,出现的错误是: Can't bind to 'ngModel' since it isn't a known property of ' ...
- vue ui之 iview 事件拦截
用过easyui的,应该清楚easyui组件有很多before事件拦截,有时候会特别重要. 最近在研究vue的ui组件iview虽然功能也不错,感觉还是没有像easyui那样强大,就比如before事 ...