BZOJ2427:[HAOI2010]软件安装——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2427
https://www.luogu.org/problemnew/show/P2515
现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。
但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。
我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。
dp简单题,然而因为数组开小了debug了两天???
(不过同时让我de出了一些题解的bug)
如果从属关系为环的话,显然其中一个选则全环都得选,于是tarjan缩点,变成了森林。
建虚点连接每个森林,剩余的就是树上背包了,与HDU1561:The more, The Better相同,但是因为n很小所以选择了O(n^2*m)的做法。
同时与那道题不同的是,因为体积可以为0,所以可能会出现有后效性的情况,特判之。
#include<map>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}e[N*];
stack<int>q;
bool inq[N];
int pre[N],d[N][N];
int cnt,head[N],n,m,dp[N][M];
int val[N],w[N],weight[N],b[N];
int dfn[N],low[N],to[N],indeg[N],t,l;
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
void dfs(int u){
for(int i=b[u];i<=m;i++)dp[u][i]=w[u];
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
dfs(v);
for(int j=m;j>=b[u];j--){
int tmp=dp[u][j];
for(int k=b[u];k<=j-b[v];k++){
if(k!=j)dp[u][j]=max(dp[u][j],dp[u][k]+dp[v][j-k]);
else dp[u][j]=max(dp[u][j],tmp+dp[v][j-k]);
}
}
}
}
void tarjan(int u){
int v;
dfn[u]=low[u]=++t;
q.push(u);inq[u]=;
for(int i=head[u];i;i=e[i].nxt){
v=e[i].to;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}else if(inq[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
l++;
do{
v=q.top();q.pop();
inq[v]=;to[v]=l;
w[l]+=val[v];b[l]+=weight[v];
}while(v!=u);
}
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++)weight[i]=read();
for(int i=;i<=n;i++)val[i]=read();
for(int v=;v<=n;v++){
pre[v]=read();
if(pre[v])add(pre[v],v);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i);
memset(head,,sizeof(head));cnt=;
for(int i=;i<=n;i++){
int u=to[pre[i]],v=to[i];
if(!pre[i]||u==v)continue;
if(!d[u][v]){
d[u][v]=;add(u,v);indeg[v]++;
}
}
int rt=l+;
for(int i=;i<=l;i++)
if(!indeg[i])add(rt,i);
dfs(rt);
printf("%d\n",dp[rt][m]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ2427:[HAOI2010]软件安装——题解的更多相关文章
- [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)
2427: [HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1987 Solved: 791[Submit][Statu ...
- bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)
2427: [HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1053 Solved: 424[Submit][Statu ...
- 题解【bzoj2427 [HAOI2010]软件安装】
Description 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到一台磁盘容量为\(M\)计算 ...
- bzoj2427: [HAOI2010]软件安装
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- [bzoj2427][HAOI2010]软件安装——强连通分量+树形DP
题目大意 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- [BZOJ2427]:[HAOI2010]软件安装(塔尖+DP)
题目传送门 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用${W}_{i}$的磁盘空间,它的价值为${V}_{i}$.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件 ...
- BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp
<题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...
- BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包
分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...
随机推荐
- mysql using filesort Using temporary
using filesort 一般人的回答是: “当行数据太大,导致内存无法容下这些数据产生的临时表时,他们就会被放入磁盘中排序.” 很不幸,这个答案是错的 ,临时表在太大的时候确实会到磁盘离去,但 ...
- 「日常训练」Regular Bridge(Codeforces Round 306 Div.2 D)
题意与分析 图论基础+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #defi ...
- Selenium自动化测试第二天(下)
如有任何学习问题,可以添加作者微信:lockingfree 目录 Selenium自动化测试基础 Selenium自动化测试第一天(上) Selenium自动化测试第一天(下) Selenium自动化 ...
- 初学Direct X(8) ——碰撞检测
初学Direct X(8) --碰撞检测 真正让一个游戏鹤立鸡群的是程序对碰撞的响应有多好,这里介绍两种检测的方法: 1) 基于边框的碰撞检测 2) 基于距离的碰撞检测 1. 基于边框的碰撞检测 1. ...
- [JSON].toXMLString()
语法:[JSON].toXMLString() 返回:[String] 说明:将[JSON]实例转换成XML格式结果. 示例: <% jsonString = "{div: 'hell ...
- 100. Remove Duplicates from Sorted Array && 101. Remove Duplicates from Sorted Array II [easy]
这两题类似,所以放在一起,先看第一题: Description Given a sorted array, remove the duplicates in place such that each ...
- adb 常用命令及操作
获取序列号: adb get-serialno 查看连接计算机的设备: adb devices 重启机器: adb reboot 重启到bootloader,即刷机模式: adb reboot boo ...
- Java进阶知识点:服务端高并发的基石 - NIO与Reactor AIO与Proactor
一.背景 要提升服务器的并发处理能力,通常有两大方向的思路. 1.系统架构层面.比如负载均衡.多级缓存.单元化部署等等. 2.单节点优化层面.比如修复代码级别的性能Bug.JVM参数调优.IO优化等等 ...
- HADOOP docker(六):hive简易使用指南
前言1.hive简介1.1 hive组件与相应功能:1.2 hive的表类型1.3 分区表1.3 分隔符1.4 hive的数据存储2.数据类型2.1 基本数据类型2.1 复杂数据类型2.3 NULL3 ...
- Sparsity Invariant CNNs
文章链接 Abstract 本文研究稀疏输入下的卷积神经网络,并将其应用于稀疏的激光扫描数据的深度信息完成实验.首先,我们表明,即使当丢失数据的位置提供给网络时,传统卷积网络在应用于稀疏数据时性能也很 ...