https://www.lydsy.com/JudgeOnline/problem.php?id=2427

https://www.luogu.org/problemnew/show/P2515

现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

dp简单题,然而因为数组开小了debug了两天???

(不过同时让我de出了一些题解的bug)

如果从属关系为环的话,显然其中一个选则全环都得选,于是tarjan缩点,变成了森林。

建虚点连接每个森林,剩余的就是树上背包了,与HDU1561:The more, The Better相同,但是因为n很小所以选择了O(n^2*m)的做法。

同时与那道题不同的是,因为体积可以为0,所以可能会出现有后效性的情况,特判之。

#include<map>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}e[N*];
stack<int>q;
bool inq[N];
int pre[N],d[N][N];
int cnt,head[N],n,m,dp[N][M];
int val[N],w[N],weight[N],b[N];
int dfn[N],low[N],to[N],indeg[N],t,l;
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
void dfs(int u){
for(int i=b[u];i<=m;i++)dp[u][i]=w[u];
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
dfs(v);
for(int j=m;j>=b[u];j--){
int tmp=dp[u][j];
for(int k=b[u];k<=j-b[v];k++){
if(k!=j)dp[u][j]=max(dp[u][j],dp[u][k]+dp[v][j-k]);
else dp[u][j]=max(dp[u][j],tmp+dp[v][j-k]);
}
}
}
}
void tarjan(int u){
int v;
dfn[u]=low[u]=++t;
q.push(u);inq[u]=;
for(int i=head[u];i;i=e[i].nxt){
v=e[i].to;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}else if(inq[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
l++;
do{
v=q.top();q.pop();
inq[v]=;to[v]=l;
w[l]+=val[v];b[l]+=weight[v];
}while(v!=u);
}
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++)weight[i]=read();
for(int i=;i<=n;i++)val[i]=read();
for(int v=;v<=n;v++){
pre[v]=read();
if(pre[v])add(pre[v],v);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i);
memset(head,,sizeof(head));cnt=;
for(int i=;i<=n;i++){
int u=to[pre[i]],v=to[i];
if(!pre[i]||u==v)continue;
if(!d[u][v]){
d[u][v]=;add(u,v);indeg[v]++;
}
}
int rt=l+;
for(int i=;i<=l;i++)
if(!indeg[i])add(rt,i);
dfs(rt);
printf("%d\n",dp[rt][m]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ2427:[HAOI2010]软件安装——题解的更多相关文章

  1. [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1987  Solved: 791[Submit][Statu ...

  2. bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1053  Solved: 424[Submit][Statu ...

  3. 题解【bzoj2427 [HAOI2010]软件安装】

    Description 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到一台磁盘容量为\(M\)计算 ...

  4. bzoj2427: [HAOI2010]软件安装

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  5. [bzoj2427][HAOI2010]软件安装——强连通分量+树形DP

    题目大意 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  6. [BZOJ2427]:[HAOI2010]软件安装(塔尖+DP)

    题目传送门 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用${W}_{i}$的磁盘空间,它的价值为${V}_{i}$.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件 ...

  7. BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  8. [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp

    <题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...

  9. BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包

    分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...

随机推荐

  1. 基于Spring的最简单的定时任务实现与配置(二)

    接上一篇,原本我以为我实现的方式很简单了,在准备写(一)的时候,就去查了查别人是怎么实现定时任务的.不查还好,这一查,发现还有更简单的.所以就会有这篇文章. 本文主要是讨论,在完成Spring 项目搭 ...

  2. ElasticSearch搜索引擎在JavaWeb项目中的应用

    近几篇ElasticSearch系列: 1.阿里云服务器Linux系统安装配置ElasticSearch搜索引擎 2.Linux系统中ElasticSearch搜索引擎安装配置Head插件 3.Ela ...

  3. Java+Selenium 3.x 实现Web自动化 - 1.自动化准备

    (一)自动化准备 说明:本文主要记录了基于公司现有项目(一个电子商务平台),从0开始实现UI自动化的历程.从准备阶段,部分内容直接省略了基础知识,一切以最终做成自动化项目为目标,难免会有晦涩之处.文章 ...

  4. unity中虚拟摇杆的实现

    实现效果: 实现: 使用NGUI添加虚拟摇杆背景和其子物体按钮,为按钮Attach  boxcollider和ButtionScript.为按钮添加如下脚本: 注意:其中的静态属性可以在控制物体移动的 ...

  5. Siki_Unity_1-3_Unity零基础入门_古迹探险

    1-3 Unity零基础入门 古迹探险 任务1/2:资料下载 链接:https://pan.baidu.com/s/1jHVymNk 密码:rbob 任务3:工程的创建和打开 Project:古迹探险 ...

  6. 在deepin系统中制作桌面快捷方式

    在使用deepin-wine 安装一些软件的时候,每次启动都需要到.deepinwine目录下运行deepin-wine xx.exe.笔者在安装过HeidiSql之后,一直苦于这种情况.比较好的解决 ...

  7. python学习笔记03 --------------程序交互与格式化输出

    1.读取用户输入内容 语法:input() 例: name = input('你的名字是?) print('你好'+name) 程序会等待用户输入名字后打印:你好(用户输入的名字) 注意:input接 ...

  8. 372. Delete Node in a Linked List【LintCode java】

    Description Implement an algorithm to delete a node in the middle of a singly linked list, given onl ...

  9. 【转】: 探索Lua5.2内部实现:虚拟机指令(3) Upvalues & Globals

    在编译期,如果要访问变量a时,会依照以下的顺序决定变量a的类型: a是当前函数的local变量 a是外层函数的local变量,那么a是当前函数的upvalue a是全局变量 local变量本身就存在于 ...

  10. ThreadLocal 线程的私有内存

    话说在<操作系统原理>这门课里面,我们学到了很多概念:进程.线程.锁.PV操作.读写者问题等等,大家还记得么?(估计有些概念早已忘记了吧,哈哈哈~) 其中关于进程.线程和锁的东西是我们平时 ...