一种节省空间概率数据结构

布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。

当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。打个比方,当它说不认识你时,肯定就不认识;当它说见过你时,可能根本就没见过面,不过因为你的脸跟它认识的人中某脸比较相似 (某些熟脸的系数组合),所以误判以前见过你。

Redis 官方提供的布隆过滤器到了 Redis 4.0 提供了插件功能之后才正式登场。布隆过滤器作为一个插件加载到 Redis Server 中,给 Redis 提供了强大的布隆去重功能。

布隆过滤器有二个基本指令,bf.add 添加元素,bf.exists 查询元素是否存在,它的用法和 set 集合的 sadd 和 sismember 差不多。注意 bf.add 只能一次添加一个元素,如果想要一次添加多个,就需要用到 bf.madd 指令。同样如果需要一次查询多个元素是否存在,就需要用到 bf.mexists 指令。

优点占用空间小,查询快

缺点有误判,删除困难

布隆过滤器是一个神奇的数据结构,可以用来判断一个元素是否在一个集合中。很常用的一个功能是用来去重。在爬虫中常见的一个需求:目标网站 URL 千千万,怎么判断某个 URL 爬虫是否宠幸过?简单点可以爬虫每采集过一个 URL,就把这个 URL 存入数据库中,每次一个新的 URL 过来就到数据库查询下是否访问过。

但是随着爬虫爬过的 URL 越来越多,每次请求前都要访问数据库一次,并且对于这种字符串的 SQL 查询效率并不高。除了数据库之外,使用 Redis 的 set 结构也可以满足这个需求,并且性能优于数据库。但是 Redis 也存在一个问题:耗费过多的内存。这个时候布隆过滤器就很横的出场了:这个问题让我来。

相比于数据库和 Redis,使用布隆过滤器可以很好的避免性能和内存占用的问题。

布隆过滤器本质是一个位数组,位数组就是数组的每个元素都只占用 1 bit每个元素只能是 0 或者 1。这样申请一个 10000 个元素的位数组只占用 10000 / 8 = 1250 B 的空间。布隆过滤器除了一个位数组,还有 K 个哈希函数

当一个元素加入布隆过滤器中的时候,会进行如下操作:

使用 K 个哈希函数对元素值进行 K 次计算,得到 K 个哈希值。

根据得到的哈希值,在位数组中把对应下标的值置为 1。

假设布隆过滤器有 3 个哈希函数:f1, f2, f3 和一个位数组 arr。现在要把 https://jaychen.cc 插入布隆过滤器中:

对值进行三次哈希计算,得到三个值 n1, n2, n3。

把位数组中三个元素 arr[n1], arr[n2], arr[3] 置为 1。

当要判断一个值是否在布隆过滤器中,对元素再次进行哈希计算,得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。

看了上面的说明,必然会提出一个问题:当插入的元素原来越多,位数组中被置为 1 的位置就越多,当一个不在布隆过滤器中的元素,经过哈希计算之后,得到的值在位数组中查询,有可能这些位置也都被置为 1。这样一个不存在布隆过滤器中的也有可能被误判成在布隆过滤器中。但是如果布隆过滤器判断说一个元素不在布隆过滤器中,那么这个值就一定不在布隆过滤器中。简单来说:

布隆过滤器说某个元素在,可能会被误判

布隆过滤器说某个元素不在,那么一定不在

这个布隆过滤器的缺陷放到上面爬虫的需求中,可能存在某些没有访问过的 URL 可能会被误判为访问过,但是如果是访问过的 URL 一定不会被误判为没访问过。

Redis 中的布隆过滤器

redis 在 4.0 的版本中加入了 module 功能,布隆过滤器可以通过 module 的形式添加到 redis 中,所以使用 redis 4.0 以上的版本可以通过加载 module 来使用 redis 中的布隆过滤器。但是这不是最简单的方式,使用 docker 可以直接在 redis 中体验布隆过滤器。

redis 布隆过滤器主要就两个命令

bf.add 添加元素到布隆过滤器中:bf.add urls https://jaychen.cc。

bf.exists 判断某个元素是否在过滤器中:bf.exists urls https://jaychen.cc

上面说过布隆过滤器存在误判的情况,在 redis 中有两个值决定布隆过滤器的准确率

error_rate:允许布隆过滤器的错误率,这个值越低过滤器的位数组的大小越大占用空间也就越大

initial_size:布隆过滤器可以储存的元素个数,当实际存储的元素个数超过这个值之后,过滤器的准确率会下降

redis 中有一个命令可以来设置这两个值:

bf.reserve urls 0.01 100

三个参数的含义:

第一个值是过滤器的名字

第二个值为 error_rate 的值。

第三个值为 initial_size 的值。

使用这个命令要注意一点:执行这个命令之前过滤器的名字应该不存在,如果执行之前就存在会报错:(error) ERR item exists

布隆过滤器(Bloom Filter)简要介绍的更多相关文章

  1. [转载]布隆过滤器(Bloom Filter)

    [转载]布隆过滤器(Bloom Filter) 这部分学习资料来源:https://www.youtube.com/watch?v=v7AzUcZ4XA4 Filter判断不在,那就是肯定不在:Fil ...

  2. 布隆过滤器(Bloom Filter)的原理和实现

    什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, ...

  3. 【面试突击】-缓存击穿(布隆过滤器 Bloom Filter)

    原文地址:https://blog.csdn.net/fouy_yun/article/details/81075432 前面的文章介绍了缓存的分类和使用的场景.通常情况下,缓存是加速系统响应的一种途 ...

  4. 布隆过滤器 Bloom Filter 2

    date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本 ...

  5. 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想

    转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton ...

  6. [转载] 布隆过滤器(Bloom Filter)详解

    转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton ...

  7. 布隆过滤器(Bloom Filter)详解

    直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一 ...

  8. 浅谈布隆过滤器Bloom Filter

    先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1) ...

  9. 布隆过滤器(Bloom Filter)-学习笔记-Java版代码(挖坑ing)

    布隆过滤器解决"面试题: 如何建立一个十亿级别的哈希表,限制内存空间" "如何快速查询一个10亿大小的集合中的元素是否存在" 如题 布隆过滤器确实很神奇, 简单 ...

随机推荐

  1. golang reflect包使用解析

    golang reflect包使用解析 参考 Go反射编码 2个重要的类型 Type Value 其中Type是interface类型,Value是struct类型,意识到这一点很重要 Type和Va ...

  2. ibatis实现批处理

    最近做一个小项目,用到Spring+iBatis.突然遇到一个很久远,却很实在的问题:在Spring下怎么使用iBatis的批处理实现? 大概是太久没有写Dao了,这部分真的忘得太干净了. 从4个层面 ...

  3. Objekt Orientierte Programmierung C++

    1.Funtion Overloading C++ erlaubt,dass einige Funktion gleiches Names deklariert wird.Der Formale Pa ...

  4. bug: 1.eclipse 中tomcat server 变灰色 2.build path 添加的jar不识别

    1.网上百度的方案试过,没有作用. 最后删掉tomcat重新解压配置解决. 确保工程属性栏中,server正确才可加载tomcat. 猜测可能原因,tomcat在eclipse有时崩溃,一般做法是将s ...

  5. echarts实现自动轮播tooltip

    最近需要实现echarts图形中hover效果轮播(即tooltip在各个数据点上轮流显示)的功能,以下就是我学习的一个过程,只是提供思路,具体场景需要自己修改.(仅针对echarts 2.2.7及以 ...

  6. Druid SqlParser理解及使用入门

    以前的项目中很少去思考SQL解析这个事情,即使在saas系统或者分库分表的时候有涉及到也会有专门的处理方案,这些方案也对使用者隐藏了实现细节. 而最近的这个数据项目里面却频繁涉及到了对SQL的处理,原 ...

  7. 实例-sprintf() 函数详解-输出格式转换函数

    Part1:实例 $filterfile = basename(PHP_SELF, '.php'); if (isset($_GET['uselastfilter']) && isse ...

  8. 高并发系列之——MQ消息中间件Kafka

    1.前言 1.1 包路径和源码 下载链接 基于发布订阅的分布式消息系统,使用scala语言编写. 特点:采用分区机制,每个分区可以放到不同的服务器上,提高了吞吐率,同时基于磁盘存储,以及副本机制可以确 ...

  9. Spring入门(三)— AOP注解、jdbc模板、事务

    一.AOP注解开发 导入jar包 aop联盟包. aspectJ实现包 . spring-aop-xxx.jar . spring-aspect-xxx.jar 导入约束 aop约束 托管扩展类和被扩 ...

  10. 浏览器根对象window之窗体和工具条

    1. 窗体和工具条 1.1 窗体 frames.self.window.parent.top.opener. frames 数组类型,页面中iframe的引用,如果页面有2个iframe,则frame ...