洛谷 P4139 上帝与集合的正确用法
题目描述
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
一句话题意:
求$2^2^2^2^{...} mod p$
输入输出格式
输入格式:
第一行一个整数T,表示数据个数。
接下来T行,每行一个正整数p,代表你需要取模的值
输出格式:
T行,每行一个正整数,为答案对p取模后的值
输入输出样例
3
2
3
6
0
1
4
说明
对于100%的数据,T<=1000,p<=10^7
Solution:
本题罗嗦了很多,实际上就是求222∞ mod p的值。
我们直接想到使用扩展欧拉定理去降次:
, 其中 phi()为欧拉函数。
那么本题我们直接递归调用该公式,phi(p)必定会一直变小,最后就是再套上快速幂的模板就行了。
代码:
#include <bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
il int gi()
{
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il ll pow_mod(ll x, ll n, ll mod)
{
ll res=;
while(n>){
if(n&)res=res*x%mod;
x=x*x%mod;
n>>=;
}
return res;
}
il int euler_phi(int n)
{
int m=(int)sqrt(n+0.5);
int ret=n;
for(int i=;i<=m;++i)if(!(n%i))
{
ret=ret/i*(i-);
while(!(n%i))n/=i;
}
if(n>)ret=ret/n*(n-);
return ret;
}
il ll f(int x)
{
if(x==)return ;
int phi=euler_phi(x);
return pow_mod(, f(phi)+phi, x);
}
int main()
{
int T,p;
scanf("%d",&T);
while(T--){scanf("%d",&p); printf("%lld\n",f(p));}
return ;
}
洛谷 P4139 上帝与集合的正确用法的更多相关文章
- 洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 题解-洛谷P4139 上帝与集合的正确用法
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...
- 洛谷P4139 上帝与集合的正确用法 拓欧
正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) ) ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...
- [洛谷P4139]上帝与集合的正确用法
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...
- 【洛谷】P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天,上帝创造了一个世界的基本元素,称做“元”. 第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- P4139 上帝与集合的正确用法
本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...
- Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
随机推荐
- lamp环境搭建(centos6.9+apache2.4+mysql5.7+php7.1)
lamp环境搭建(centos6.9+apache2.4+mysql5.7+php7.1) 安装前准备:CentOS 6.9 64位 最小化安装 yum install -y make gcc gcc ...
- 有关Laravel 4 的 Homestead 安装部署的细节
对于Vagrant,我是相见恨晚的.有时候抽出几个小时的时间学会一种工具,对于将来可以节省几十甚至几百小时的时间. Vagant最大的好处就是节省了安装配置运行环境的时间,统一开发环境,同时可以最大限 ...
- MSP430编译器__intrinsic指令
1. 在文件intrinsics.c里面发现很多函数前面有__intrinsic,说是这些是MSP430的特定函数(其他单片机用不了),应该和编译器有关,并没有具体的函数实现,我猜测,是直接转成汇编代 ...
- 强化学习读书笔记 - 11 - off-policy的近似方法
强化学习读书笔记 - 11 - off-policy的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and ...
- scrapy (一)
scrapy框架 scrapy 是一个爬虫框架,能够高效率,高层次的爬取页面的数据并进行处理. 在scrapy的英文文档中,有这样的一个流程图 scrapy 框架主要分为五大部分,spider, en ...
- selenium自动化之js处理滚动条和元素聚焦
selenium并不是万能的,有时候页面上操作无法实现的,这时候就需要借助JS来完成了. 当我们页面上的元素超过一屏后,想操作屏幕下方的元素,是不能直接操作的,会报元素不可见异常的.这时候需要借助滚动 ...
- CentOS 下 Java 的下载、安装、配置
CentOS 下 Java 的下载.安装.配置 系统: CentOS 7 x86_64 Java 版本: 1.8.0_171 本文将 Java 目录放在 /usr/local/java 文件夹下,读者 ...
- java excel导出(表头合并,多行表头)
@RequestMapping(value="orderExcelList2") public void orderExcelList2forJava(Order order,Ht ...
- 自动化运维工具saltstack02 -- 之SaltStack的配置管理
SaltStack的配置管理 1.配置管理说明 配置管理,顾名思义及配置与管理, salt-master的配置文件编写格式之YAML语法说明: 数据的结构通过缩进来表示,每一级用两个空格来表示缩进,如 ...
- vue2.0做移动端开发用到的相关插件和经验总结1.0
最近在用vue2.0做微信公众号相关的前端开发,经过这次开发实践,现将项目中用到的相关比较实用的插件及遇到的相关问题进行整理,希望和大家共同交流...... cssrem:一个CSS值转REM的VSC ...