洛谷 P4139 上帝与集合的正确用法
题目描述
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
一句话题意:
求$2^2^2^2^{...} mod p$
输入输出格式
输入格式:
第一行一个整数T,表示数据个数。
接下来T行,每行一个正整数p,代表你需要取模的值
输出格式:
T行,每行一个正整数,为答案对p取模后的值
输入输出样例
3
2
3
6
0
1
4
说明
对于100%的数据,T<=1000,p<=10^7
Solution:
本题罗嗦了很多,实际上就是求222∞ mod p的值。
我们直接想到使用扩展欧拉定理去降次:
, 其中 phi()为欧拉函数。
那么本题我们直接递归调用该公式,phi(p)必定会一直变小,最后就是再套上快速幂的模板就行了。
代码:
#include <bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
il int gi()
{
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il ll pow_mod(ll x, ll n, ll mod)
{
ll res=;
while(n>){
if(n&)res=res*x%mod;
x=x*x%mod;
n>>=;
}
return res;
}
il int euler_phi(int n)
{
int m=(int)sqrt(n+0.5);
int ret=n;
for(int i=;i<=m;++i)if(!(n%i))
{
ret=ret/i*(i-);
while(!(n%i))n/=i;
}
if(n>)ret=ret/n*(n-);
return ret;
}
il ll f(int x)
{
if(x==)return ;
int phi=euler_phi(x);
return pow_mod(, f(phi)+phi, x);
}
int main()
{
int T,p;
scanf("%d",&T);
while(T--){scanf("%d",&p); printf("%lld\n",f(p));}
return ;
}
洛谷 P4139 上帝与集合的正确用法的更多相关文章
- 洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 题解-洛谷P4139 上帝与集合的正确用法
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...
- 洛谷P4139 上帝与集合的正确用法 拓欧
正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) ) ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...
- [洛谷P4139]上帝与集合的正确用法
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...
- 【洛谷】P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天,上帝创造了一个世界的基本元素,称做“元”. 第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- P4139 上帝与集合的正确用法
本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...
- Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
随机推荐
- idea alt+enter导包时被锁定导某一个包时的解决方法
在只有一个包指向的时候,把光标放在Test这种字符之间的话 就会直接导这个 所以把光标放在最后就可以导别的了
- python开发ftp服务器第一天(pyftpdlib)
学习了大约快一个月的python,现在开始有意识做一些项目.(我的新书<Python爬虫开发与项目实战>出版了,大家可以看一下样章) 据我了解,python现在更多的是用于自动化运维方面, ...
- _INTSIZEOF
在_INTSIZEOF中该有的都有了 1.这其中最小非负剩余和最大正余数例子如下: 设n为4,当r为1时,最小非负剩余就是1,最大非正剩余就是1 - 4 = -3,最大正余数为4 - 1 = 3 2. ...
- elasticserach + kibana环境搭建
一.java环境安装: 1.安装jdk,点击下一步即可. 2.环境变量配置 1) 找到jdk安装目录:C:\Program Files\Java\jdk1.8.0_161 2) 配置环境变量 ①找到环 ...
- vim—多行注释、取消多行注释
多行注释 命令模式: (1)将光标放在要注释的行首,按下组合键ctrl + v ,然后按上下键选取要注释的行. (2)按下大i键,然后插入要注释的符号 # (3)按ESC键,退出后,就会全部注释. 取 ...
- sql server block如何查询并kill
本帖提供两种做法,可避免在 SQL Server 事务锁定时产生的不正常或长时间阻塞,让用户和程序也无限期等待,甚至引起 connection pooling 连接数超过容量. 所谓的「阻塞」,是指当 ...
- Live Archive 训练题
7091 Height Ordering Mrs. Chambers always has her class line up in height order (shortest at the fro ...
- “我爱淘”第二冲刺阶段Scrum站立会议3
完成任务: 完成了注册界面的设计,以及部分代码,但是还没有完成服务器端的添加功能. 计划任务: 将注册功能实现了它,可以对数据库进行添加,在客户端实现分类功能,通过学院的分类查看书籍. 遇到问题: 分 ...
- 用C++实现简单随机二元四则运算
让我们想看看二元四则运算都需要实现什么: (1) 定制题目数量 (2) 是否有乘除法 (3) 题目数值范围 (4) 加减有无负数 (5) 除法有无余数 (6) 是否支持分数(真分数.假分数…) (7) ...
- 第5章 Linux 常用网络指令
网络参数设定使用的指令 手动/自动设定与启动/关闭 IP 参数: ifconfig, ifup, ifdown ifconfig :查询.设定网络卡与 IP 网域等相关参数:ifup, ifdown: ...