对任意一个\(m\times n\)的实矩阵,总可以按照SVD算法对其进行分解。即:

\[A = U\Sigma V^T
\]

其中\(U、V\)分别为\(m\times m、n\times n\)的方阵,由\(A\)的左奇异向量和右奇异向量组成,且\(U\)与\(V\)均为正交阵。\(\Sigma\)为\(m\times n\)的对角矩阵,对角线上的元素为矩阵\(A\)的奇异值。

在MKL库中求解奇异值和奇异向量的函数为LAPACKE_dgesvd

1 参数详解

lapack_int LAPACKE_dgesvd(
matrix_layout, // (input)行优先(LAPACK_ROW_MAJOR)或列优先(LAPACK_COL_MAJOR)
jobu, // (input)计算矩阵U的全部或部分并返回。
/*"A":返回U的所有M列到U,
"S":返回U的前min(m,n)列到U,
"O":返回U的前min(m,n)列到A矩阵(覆盖),
"N":不计算矩阵U*/
jobvt, // (input)计算矩阵VT的全部或部分并返回;选项列表与jobu相同;
m, // (input)A矩阵的行,m>=0
n, // (input)A矩阵的列,n>=0
a, // (input/output)A矩阵
lda, // (input)A矩阵的第一维大小
s, // (output)A矩阵的奇异值,并按照从大到小的顺序排列
u, // (output) 矩阵U元素的一维数组
ldu, // (input) U矩阵的第一维大小
vt, // (output) 矩阵VT元素的一维数组
ldvt, // (input) VT矩阵的第一维大小
superb, // (output)工作空间
)

2 定义待处理矩阵

#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h" #define min(a,b) ((a)>(b)?(b):(a)) // 矩阵维度参数
#define M 6
#define N 5
#define LDA N
#define LDU M
#define LDVT N
// 声明需要的参数
MKL_INT m = M, n = N, lda = LDA, ldu = LDU, ldvt = LDVT, info;
double superb[min(M,N)-1]; double s[N], u[LDU*M], vt[LDVT*N]; //声明奇异值与奇异向量
double a[LDA*M] = { //定义待分解的A矩阵
8.79, 9.93, 9.83, 5.45, 3.16,
6.11, 6.91, 5.04, -0.27, 7.98,
-9.15, -7.93, 4.86, 4.85, 3.01,
9.57, 1.64, 8.83, 0.74, 5.80,
-3.49, 4.02, 9.80, 10.00, 4.27,
9.84, 0.15, -8.99, -6.02, -5.31
};

3 执行SVD分解

LAPACKE_dgesvd(LAPACK_ROW_MAJOR, 'A', 'A', m, n, a, lda, s, u, ldu, vt, ldvt, superb);

结果如图:

完整代码

#include <stdlib.h>
#include <stdio.h>
#include "mkl_lapacke.h" #define min(a,b) ((a)>(b)?(b):(a)) // 展示奇异向量
extern void print_matrix(const char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda); #define M 6
#define N 5
#define LDA N
#define LDU M
#define LDVT N int main() {
//声明、定义输入
MKL_INT m = M, n = N, lda = LDA, ldu = LDU, ldvt = LDVT, info;
double superb[min(M, N) - 1]; double s[N], u[LDU * M], vt[LDVT * N];
double a[LDA * M] = {
8.79, 9.93, 9.83, 5.45, 3.16,
6.11, 6.91, 5.04, -0.27, 7.98,
-9.15, -7.93, 4.86, 4.85, 3.01,
9.57, 1.64, 8.83, 0.74, 5.80,
-3.49, 4.02, 9.80, 10.00, 4.27,
9.84, 0.15, -8.99, -6.02, -5.31
}; printf("LAPACKE_dgesvd (row-major, high-level) Example Program Results\n");
//计算SVD
info = LAPACKE_dgesvd(LAPACK_ROW_MAJOR, 'A', 'A', m, n, a, lda,
s, u, ldu, vt, ldvt, superb); if (info > 0) {
printf("The algorithm computing SVD failed to converge.\n");
exit(1);
}
//奇异值
print_matrix("Singular values", 1, n, s, 1);
//左奇异向量
print_matrix("Left singular vectors (stored columnwise)", m, n, u, ldu);
//右奇异向量
print_matrix("Right singular vectors (stored rowwise)", n, n, vt, ldvt);
exit(0);
} void print_matrix(const char* desc, MKL_INT m, MKL_INT n, double* a, MKL_INT lda) {
MKL_INT i, j;
printf("\n %s\n", desc);
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) printf(" %6.2f", a[i * lda + j]);
printf("\n");
}
}

补充:SVD分解求逆

由之前的介绍,对于任意的实数矩阵\(A\),可以进行SVD分解:

\[A = U\Sigma V^T\\
\]

其中,\(U\)、\(V^T\)为正交矩阵,\(\Sigma\)为对角矩阵。若\(A\)矩阵可逆,易得

\[A^{-1}=(U\Sigma V^T)^{-1}=V\Sigma^{-1}U^T
\]

即当使用LAPACKE_dgesvd,将矩阵\(A\)分解出三部分后,再经过简单的转置、对角阵求逆,最后通过LAPACKE_dgemm完成各矩阵相乘即可得到\(A\)的逆矩阵。

MKL库奇异值分解(LAPACKE_dgesvd)的更多相关文章

  1. [转]Numpy使用MKL库提升计算性能

    from:http://unifius.wordpress.com.cn/archives/5 系统:Gentoo Linux (64bit, Kernel 3.7.1)配置:Intel(R) Cor ...

  2. 如何在 code blocks中使用 mkl库

    为了安装caffe, 所以安装了mkl, 现在想在codeblock的项目中使用mkl. 设置mkl环境变量: mkl安装好后默认是在/opt/intel/mkl中,其中/opt/intel/mkl/ ...

  3. MKL库矩阵乘法

    此示例是利用Intel 的MKL库函数计算矩阵的乘法,目标为:\(C=\alpha*A*B+\beta*C\),由函数cblas_dgemm实现: 其中\(A\)为\(m\times k\)维矩阵,\ ...

  4. 科学计算库(BLAS,LAPACK,MKL,EIGEN)

    函数库接口标准:BLAS (Basic Linear Algebra Subprograms)和LAPACK (Linear Algebra PACKage) 1979年,Netlib首先用Fortr ...

  5. 64位Win7下安装并配置Python3的深度学习库:Theano

    注:本文全原创,作者:Noah Zhang  (http://www.cnblogs.com/noahzn/) 这两天在安装Python的深度学习库:Theano.尝试了好多遍,CMake.MinGW ...

  6. Linux C/C++ 链接选项之静态库--whole-archive,--no-whole-archive和--start-group, --end-group

    参照这两篇博客: http://stackoverflow.com/questions/805555/ld-linker-question-the-whole-archive-option http: ...

  7. MKL与VS2019配置方法

    VS2019配置oneAPI并调用MKL库 oneAPI oneAPI是一个跨架构的编程工具,旨在简化跨GPU.CPU.FPGA和AI加速器之间的编程,可以与英特尔自身设备,或其他厂商的芯片配合使用, ...

  8. Microsoft+R:Microsoft R Open (MRO)安装和多核运作

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 本文转载于公众号大猫的R语言课堂,公众号作者使 ...

  9. Caffe + Ubuntu 14.04 64bit + 无CUDA(linux下安装caffe(无cuda)以及python接口)

    安装Caffe指导书 环境: Linux 64位 显卡为Intel + AMD,非英伟达显卡 无GPU 一. 安装准备工作 1. 以管理员身份登录 在左上角点击图标,搜索terminal(即终端),以 ...

随机推荐

  1. [WC2018]州区划分(FWT,FST)

    [WC2018]州区划分(FWT,FST) Luogu loj 题解时间 经典FST. 在此之前似乎用到FST的题并不多? 首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可. 考 ...

  2. bzoj3545/bzoj3551 [ONTAK2010]Peaks/Peaks加强版

    bzoj3545/bzoj3551 [ONTAK2010]Peaks/Peaks加强版 传送门:bzoj  bzoj wdnmd为什么加强版不是权限题原题却是啊 3545: [ONTAK2010]Pe ...

  3. 半吊子菜鸟学Web开发4 --Html css学习2

    1<a>标签,链接到另一个页面 <a href="目标网址" title="鼠标滑过显示的文本">链接显示的文本</a> H ...

  4. Ribbon和Feign的区别?

    1.Ribbon都是调用其他服务的,但方式不同.2.启动类注解不同,Ribbon是@RibbonClient feign的是@EnableFeignClients3.服务指定的位置不同,Ribbon是 ...

  5. redis 持久化有几种方式?

    面试题 redis 的持久化有哪几种方式?不同的持久化机制都有什么优缺点?持久化机制具体底层是如何实现的? 面试官心理分析 redis 如果仅仅只是将数据缓存在内存里面,如果 redis 宕机了再重启 ...

  6. Less使用@import进行Mixins

    Import 指令 从其他样式表导入样式 在标准CSS中,@ import at-rules必须在所有其他类型的规则之前.但Less.js并不关心你放置@import语句的位置 Example: .f ...

  7. 线程 B 怎么知道线程 A 修改了变量?

    1.volatile 修饰变量 2.synchronized 修饰修改变量的方法 3.wait/notify 4.while 轮询

  8. 处理器映射器(HandlerMapping)及处理器适配器(HandlerAdapter)详解(二)

    注解的 处理器映射器 和 处理器适配器 介绍 注解的映射器: 在 Spring3.1 之前使用 DefaultAnnotationHandlerMapping 注解映射器(根据 DispatcherS ...

  9. C语言之基本语句分类(知识点5)

    一.C语言基本语句分类 ①数据定义语句 ②赋值语句 ③函数调用语句 ④表达式语句 ⑤流程控制语句 ⑥复合语句(多个大括号的层次) ⑦空语句 二.注意 ①scanf("%d,%d", ...

  10. 设置IE的自动导包器

    一丶打开IE设置: 快捷键:Ctrl+Alt+S 二丶将Add unambiguous imports on the fly 选中即可: 三丶设置好后别忘了"OK":