传送门

Luogu

解题思路

预支一点东西:

这题其实有着更为思维的图模型,还十分考验码力,不简单啊 这居然是联赛题

讲正解:

显然我们对于一种合法方案,空格子肯定是一直围绕着特定棋子反复横跳的。

所以说我们可以先预处理一下:对于任何一种合法的情况,求出空格在指定棋子的四个方向横跳的最小步数,这个可以通过多次 \(\text{BFS}\) 来求。

然后考虑处理询问。

不难想到任何一种走法都是先让空格来到指定棋子旁,然后进行上面提到的反复横跳,最后空格也一定会与指定棋子相邻。

所以说,我们就对于每一种指定棋子和空格的摆放情况创建一个节点,通过空格的横跳和指定棋子和空格的交换,也就是摆放情况的变化来连边。

每次询问时,我们先让空格来到指定棋子旁(这个需要枚举四个不同方向,当然要合法),

然后多源最短路,最后枚举一下终止状况,取最小步数的方案作为答案就好了。

说是这么说,其实码起来细节多得不得了啊。。。

细节注意事项

  • 爆搜题,你们懂得。。。

参考代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#include <queue>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= c == '-', c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
} const int _ = 32;
const int __ = 10005;
const int dx[] = { -1, 0, 0, 1 };
const int dy[] = { 0, -1, 1, 0 }; int n, m, q, a[_][_];
int f[4][_][_][_][_], vis[_][_];
int Vis[__], dis[__];
struct node { int x, y; } ; int tot, head[__], nxt[__ << 3], ver[__ << 3], w[__ << 3];
inline void Add_edge(int u, int v, int d)
{ nxt[++tot] = head[u], head[u] = tot, ver[tot] = v, w[tot] = d; } inline int id(int x, int y, int t) { return (x - 1) * 120 + (y - 1) * 4 + t; } inline void calc(int sx, int sy) {
static queue < node > Q;
for (rg int k = 0; k < 4; ++k) {
memset(vis, -1, sizeof vis);
int x = sx + dx[k], y = sy + dy[k];
if (x < 1 || x > n || y < 1 || y > m) continue;
vis[x][y] = 1, f[k][sx][sy][sx][sy] = 0, Q.push((node) { sx, sy });
Add_edge(id(sx, sy, 3 - k), id(x, y, k), 1);
while (!Q.empty()) {
node u = Q.front(); Q.pop();
int x = u.x, y = u.y;
for (rg int t = 0; t < 4; ++t) {
int xx = x + dx[t], yy = y + dy[t];
if (xx < 1 || xx > n || yy < 1 || yy > m) continue;
if (vis[xx][yy] != -1 || !a[xx][yy] || (xx == sx && yy == sy)) continue;
f[k][sx][sy][xx][yy] = f[k][sx][sy][x][y] + 1;
vis[xx][yy] = 1, Q.push((node) { xx, yy });
}
}
for (rg int t = 0; t < 4; ++t) {
int xx = x + dx[t], yy = y + dy[t];
if (k + t == 3 || f[k][sx][sy][xx][yy] == 0x3f3f3f3f) continue;
Add_edge(id(sx, sy, 3 - k), id(xx, yy, t), f[k][sx][sy][xx][yy]);
}
}
} inline void init() {
memset(f, 0x3f, sizeof f);
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= m; ++j)
if (a[i][j]) calc(i, j);
} inline void bfs(int ex, int ey, int sx, int sy) {
static queue < node > Q;
Q.push((node) { ex, ey });
vis[ex][ey] = 0;
while (!Q.empty()) {
node u = Q.front(); Q.pop();
int x = u.x, y = u.y;
for (rg int k = 0; k < 4; ++k) {
int xx = x + dx[k], yy = y + dy[k];
if (xx < 1 || xx > n || yy < 1 || yy > m) continue;
if (!a[xx][yy] || vis[xx][yy] != -1 || (xx == sx && yy == sy)) continue;
vis[xx][yy] = vis[x][y] + 1, Q.push((node) { xx, yy });
}
}
} inline void Dijkstra(int sx, int sy) {
static priority_queue < pair < int, int > > Q;
for (rg int k = 0; k < 4; ++k) {
int xx = sx + dx[k], yy = sy + dy[k];
if (xx < 1 || xx > n || yy < 1 || yy > m || !a[xx][yy]) continue;
int ID = id(xx, yy, k);
dis[ID] = vis[xx][yy] == -1 ? 0x3f3f3f3f : vis[xx][yy];
Q.push(make_pair(-dis[ID], ID));
}
while (!Q.empty()) {
int u = Q.top().second; Q.pop();
if (Vis[u]) continue; Vis[u] = 1;
for (rg int i = head[u]; i; i = nxt[i]) {
int v = ver[i];
if (dis[v] > dis[u] + w[i])
dis[v] = dis[u] + w[i], Q.push(make_pair(-dis[v], v));
}
}
} inline void solve() {
memset(Vis, 0, sizeof Vis);
memset(vis, -1, sizeof vis);
memset(dis, 0x3f, sizeof dis);
int ex, ey, sx, sy, tx, ty;
read(ex), read(ey), read(sx), read(sy), read(tx), read(ty);
if (sx == tx && sy == ty) { puts("0"); return ; }
bfs(ex, ey, sx, sy), Dijkstra(sx, sy);
int ans = 0x3f3f3f3f;
for (rg int i = 0; i < 4; ++i) {
int x = tx + dx[i], y = ty + dy[i];
if (x < 1 || x > n || y < 1 || y > m) continue;
ans = min(ans, dis[id(x, y, i)]);
}
if (ans == 0x3f3f3f3f) puts("-1"); else printf("%d\n", ans);
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
read(n), read(m), read(q);
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= m; ++j) read(a[i][j]);
init();
while (q--) solve();
return 0;
}

完结撒花 \(qwq\)

「NOIP2013」华容道的更多相关文章

  1. loj2613 「NOIP2013」华容道[最短路]

    感觉和以前做过的一个推箱子很像,都是可以用bfs解决的,而且都是手玩出结论. 因为起始棋子肯定是要和空格交换的,所以第一件事是先把空格移到棋子旁边.然后讨论怎么设计搜索状态.由于和推箱子实在太像了,所 ...

  2. 「NOIP2013」「LuoguP1967」货车运输(最大生成树 倍增 LCA

    题目描述 AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最 ...

  3. LG1983 「NOIP2013」车站分级 拓扑排序

    问题描述 LG1983 题解 考虑建立有向边\((a,b)\),代表\(a\)比\(b\)低级. 于是枚举每一辆车次经过的车站\(x \in [l,r]\),如果不是车辆停靠的车站,则从\(x\)向每 ...

  4. 「NOIP2013」货车运输

    传送门 Luogu 解题思路 首先 \(\text{Kruskal}\) 一下,构造出一棵森林. 并查集还要用来判断连通性. 倍增 \(\text{LCA}\) 的时候顺便维护一下路径最小值即可. 细 ...

  5. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  6. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

  7. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  8. 「C++」理解智能指针

    维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...

  9. 「JavaScript」四种跨域方式详解

    超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...

随机推荐

  1. Perl 笔记

    目录 Perl 学习 常用记录 基础 1. 运行perl 2. 字符串 3. 变量 4. 条件 5. 循环 6. 运算符 7. 时间日期 8. 子程序(函数) 9. 引用 10. 格式化输出 11. ...

  2. 翻页插件 jquery

    //css <style> * { padding:; margin:; list-style: none; } .wrapper { width: 100%; cursor: point ...

  3. 影响IPSec的网络问题

    影响IPSec VPN的网络问题:①.动态地址问题:两个 站点之间IPSec VPN的条件是站点之间有固定的IP地址,假如说分支站点采用ADSL上网链路,那么其IP地址是动态的,那么就在VPN时出现问 ...

  4. Windows下MySQL5.7版本中修改编码为utf-8

    我们新安装的MySQL数据库默认的字符是 latin1 ,所以每次新建数据库都要修改字符,非常麻烦.所以我们必须将它改成UTF8字符的. 修改方法如下: 一.修改MySQL的my.ini 首先在 \P ...

  5. Java 石家庄铁道大学软件工程系 学生学籍管理系统 2019 版

    本系统的作用是简单实现一些学生成绩管理操作:录入,修改,绩点计算,以及系统退出等. 首先建一个主函数实现界面的实现,然后建一个数据类用来定义存放数据.之后建立一个工具类,用来实现所有要进行的操作.首先 ...

  6. Nginx实现HTTP及TCP负载均衡

    这种通过一台apache的服务器把客户请求分别传递给两台tomcat叫负载均衡  ========================================= ================= ...

  7. Linux文件系统与日志!

    1.inode 和 block 概述 文件储存在硬盘上,硬盘的最小储存单位叫“扇区”(sector),每个扇区储存 512 字节. 操作系统读取硬盘的时候,不会一个个扇区的读取,这样效率太低,而是一次 ...

  8. Binary Heap(二叉堆) - 堆排序

    这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我 ...

  9. Asteroids!_poj2225

    这是一个立方体的空间的路径搜索问题,若可达输出步数,不可达输出“NO ROUTE” 一道……课后题 输入的话我是按字符输入这个空间的 然后普通的bfs,一个方向数组,一个空间数组(因为只用一次,懒的再 ...

  10. hutoolJava工具类的使用

    前言 安装 友情开源项目 Hutool相关博客(软文) 捐赠使用公开 核心(Hutool-core) 克隆 支持泛型的克隆接口和克隆类 类型转换 类型转换工具类-Convert 自定义类型转换-Con ...