Dancing Stars on Me

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=5533

Description

The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

⋅1. If you touch a buoy before your opponent, you will get one point. For example if your opponent touch the buoy #2 before you after start, he will score one point. So when you touch the buoy #2, you won't get any point. Meanwhile, you cannot touch buoy #3 or any other buoys before touching the buoy #2.

⋅2. Ignoring the buoys and relying on dogfighting to get point.
If you and your opponent meet in the same position, you can try to
fight with your opponent to score one point. For the proposal of game
balance, two players are not allowed to fight before buoy #2 is touched by anybody.

There are three types of players.

Speeder:
As a player specializing in high speed movement, he/she tries to avoid
dogfighting while attempting to gain points by touching buoys.
Fighter:
As a player specializing in dogfighting, he/she always tries to fight
with the opponent to score points. Since a fighter is slower than a
speeder, it's difficult for him/her to score points by touching buoys
when the opponent is a speeder.
All-Rounder: A balanced player between Fighter and Speeder.

There will be a training match between Asuka (All-Rounder) and Shion (Speeder).
Since the match is only a training match, the rules are simplified: the game will end after the buoy #1 is touched by anybody. Shion is a speed lover, and his strategy is very simple: touch buoy #2,#3,#4,#1 along the shortest path.

Asuka is good at dogfighting, so she will always score one point by dogfighting with Shion, and the opponent will be stunned for T seconds after dogfighting.
Since Asuka is slower than Shion, she decides to fight with Shion for
only one time during the match. It is also assumed that if Asuka and
Shion touch the buoy in the same time, the point will be given to Asuka
and Asuka could also fight with Shion at the buoy. We assume that in
such scenario, the dogfighting must happen after the buoy is touched by
Asuka or Shion.

The speed of Asuka is V1 m/s. The speed of Shion is V2 m/s. Is there any possibility for Asuka to win the match (to have higher score)?

Input

The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

Output

For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).

Sample Input

3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0

Sample Output

NO
YES
NO

HINT

题意

给你n个整数点,然后问你是否这几个点能够构成一个正多边形

题解:

只用考虑n=4的情况,然后判断是否为一个正方形就好了

然后瞎搞一波。。。

代码

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cstring>
using namespace std; pair<int,int> p[];
int check()
{
sort(p,p+);
vector<int>G;
for(int i=;i<;i++)
for(int j=i+;j<;j++)
{
int x = p[i].first - p[j].first;
int y = p[i].second - p[j].second;
G.push_back((x*x)+(y*y));
}
sort(G.begin(),G.end());
for(int i=;i<;i++)
if(G[i]!=G[i-])
return ;
if(G[]==G[])return ;
if(G[]!=G[])return ;
return ;
}
int main()
{
int t;scanf("%d",&t);
while(t--)
{
int n;scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d%d",&p[i].first,&p[i].second);
if(n!=)
{
printf("NO\n");continue;
}
sort(p,p+);
if(check())printf("YES\n");
else printf("NO\n");
}
}

hdu 5533 Dancing Stars on Me 水题的更多相关文章

  1. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  2. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  3. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  4. HDU 5533 Dancing Stars on Me( 有趣的计算几何 )

    链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...

  5. HDU 2096 小明A+B --- 水题

    HDU 2096 /* HDU 2096 小明A+B --- 水题 */ #include <cstdio> int main() { #ifdef _LOCAL freopen(&quo ...

  6. [HDU 2602]Bone Collector ( 0-1背包水题 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 水题啊水题 还给我WA了好多次 因为我在j<w[i]的时候状态没有下传.. #includ ...

  7. hdu 2117:Just a Numble(水题,模拟除法运算)

    Just a Numble Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  8. hdu 2050:折线分割平面(水题,递归)

    折线分割平面 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  9. hdu 2044:一只小蜜蜂...(水题,斐波那契数列)

    一只小蜜蜂... Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepte ...

随机推荐

  1. svn强制提交备注信息

    当我们用tortoisesvn,提交代码时,有很多人不喜欢写注释的,代码版本多了,根本搞不清,哪个版本改了什么东西?所以如果加一些注释的话,我们看起来,也方便很多.所以在提交的时候,我会强制要求,写注 ...

  2. <六>面向对象分析之UML核心元素之业务实体

    一:基本概念

  3. hdu 4300(kmp)

    题意:说实话这个题的题意还真的挺难懂的,我开始看了好久都没看懂,后来百度了下题意才弄懂了,这题的意思就是首先有一个字母的转换表,就是输入的第一行的字符串,就是'a'转成第一个字母,'b'转成转换表的第 ...

  4. [转] “error LNK2019: 无法解析的外部符号”之分析

    HiLoveS原文“error LNK2019: 无法解析的外部符号”之分析 最近在用VS 2008开发,初学遇到不少问题,最头疼的问题之一就是:LNK2019. 百度一下讲的并不够全面,反正都没解决 ...

  5. android 滑动菜单SlidingMenu的实现

    首先我们看下面视图:       这种效果大家都不陌生,网上好多都说是仿人人网的,估计人家牛逼出来的早吧,我也参考了一一些例子,实现起来有三种方法,我下面简单介绍下: 方法一:其实就是对Gesture ...

  6. 1、ListView自定义控件下拉刷新(一)

    <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" android:layo ...

  7. 基于MFC和opencv的FFT

    在网上折腾了一阵子,终于把这个程序写好了,程序是基于MFC的,图像显示的部分和获取图像的像素点是用到了opencv的一些函数,不过FFT算法没有用opencv的(呵呵,老师不让),网上的二维的FFT程 ...

  8. 通过实验分析system_call中断处理过程

    作者:吴乐 山东师范大学 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 本实验目的:通过以一个简单的m ...

  9. 建立简单的VLAN通信

    http://minitoo.blog.51cto.com/4201040/786011(转载) 在路由器上做单臂路由实现VLAN间路由,也就是设置子接口和封装协议. 实现环境如下图: 在交换机上建立 ...

  10. Java中的return

    比如你写了一个叫getInt的类public int getInt(){ //这个类的意思就是一个具有返回值类型为int的类了 //通常如果不需要返回值的话 这里就写void....//你的具体代码r ...