【刷题】BZOJ 2125 最短路
Description
给一个N个点M条边的连通无向图,满足每条边最多属于一个环,有Q组询问,每次询问两点之间的最短路径。
Input
输入的第一行包含三个整数,分别表示N和M和Q 下接M行,每行三个整数v,u,w表示一条无向边v-u,长度为w 最后Q行,每行两个整数v,u表示一组询问
Output
输出Q行,每行一个整数表示询问的答案
Sample Input
9 10 2
1 2 1
1 4 1
3 4 1
2 3 1
3 7 1
7 8 2
7 9 2
1 5 3
1 6 4
5 6 1
1 9
5 7
Sample Output
5
6
HINT
对于100%的数据,N<=10000,Q<=10000
Solution
仙人掌上的最短路
建圆方树,将原图变成树,求出每个点到根的最短距离,询问的话差分一下就好了,这是个经典差分
但是求LCA的时候要分情况
首先,如果LCA是圆点,即不在环上走,那么直接差分就好了
如果LCA是方点,那么就会要在环上走,所以要找LCA下面的两个点,就是进入环的两个点,先求出询问的两个点到入环的两个点的距离,然后要找入环的两个点在环上短侧的距离。所以对于每个环即点双,要保存这个环的总长,以及每个点的前缀长,以便快速求环上两点的最短距离
然后就做完了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=10000+10,MAXM=1000000+10,inf=0x3f3f3f3f;
int n,m,Q,e,to[MAXM<<1],nex[MAXM<<1],beg[MAXN],DFN[MAXN],LOW[MAXN],d[MAXN],dep[MAXN],Jie[20][MAXN],Visit_Num,sum[MAXN],len[MAXN],cnt,out[MAXM<<1],Be[MAXN],was[MAXM<<1],p[MAXN];
std::stack<int> s;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z=0)
{
to[++e]=y;
nex[e]=beg[x];
out[e]=x;
beg[x]=e;
was[e]=z;
}
inline void SPFA(int s)
{
for(register int i=1;i<=n;++i)d[i]=inf;
d[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(d[to[i]]>d[x]+was[i])
{
d[to[i]]=d[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
}
inline void Tarjan(int x,int f)
{
DFN[x]=LOW[x]=++Visit_Num;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f)continue;
else if(!DFN[to[i]])
{
s.push(i);
Tarjan(to[i],x);
chkmin(LOW[x],LOW[to[i]]);
if(LOW[to[i]]>=DFN[x])
{
int temp;++cnt;
do{
temp=s.top();
s.pop();
len[cnt]+=was[temp];
if(out[temp]!=x||to[temp]!=to[i])sum[out[temp]]=0;
sum[out[temp]]+=sum[to[temp]]+was[temp];
if(out[temp]!=x)
{
Jie[0][out[temp]]=x;
Be[out[temp]]=cnt;
}
if(to[temp]!=x)
{
Jie[0][to[temp]]=x;
if(to[temp]!=to[i])Be[to[temp]]=cnt;
}
}while(out[temp]!=x||to[temp]!=to[i]);
}
}
else if(DFN[to[i]]<DFN[x])s.push(i),chkmin(LOW[x],DFN[to[i]]);
}
inline void dfs(int x,int f)
{
dep[x]=dep[f]+1;
for(register int i=beg[x];i;i=nex[i])
if(to[i]!=f)dfs(to[i],x);
}
inline int LCA(int u,int v,int &iu,int &iv)
{
if(dep[u]<dep[v])std::swap(u,v);
iu=iv=v;
int tmp=dep[u]-dep[v];
if(dep[u]>dep[v])
for(register int i=19;i>=0;--i)
if(tmp>>i&1)u=Jie[i][u];
if(u==v)return u;
for(register int i=19;i>=0;--i)
if(Jie[i][u]^Jie[i][v])u=Jie[i][u],v=Jie[i][v];
iu=u,iv=v;
return Jie[0][u];
}
int main()
{
read(n);read(m);read(Q);
for(register int i=1;i<=m;++i)
{
int u,v,w;read(u);read(v);read(w);
insert(u,v,w);insert(v,u,w);
}
SPFA(1);Tarjan(1,0);
e=0;memset(beg,0,sizeof(beg));
for(register int i=2;i<=n;++i)insert(i,Jie[0][i]),insert(Jie[0][i],i);
dfs(1,0);
for(register int j=1;j<=19;++j)
for(register int i=1;i<=n;++i)Jie[j][i]=Jie[j-1][Jie[j-1][i]];
while(Q--)
{
int u,v,iu,iv,lca,res=0;read(u);read(v);lca=LCA(u,v,iu,iv);
if(Be[iu]&&Be[iu]==Be[iv])
{
int l=std::abs(sum[iu]-sum[iv]),r=len[Be[iu]]-l;
res=d[u]+d[v]-d[iu]-d[iv]+min(l,r);
}
else res=d[u]+d[v]-(d[lca]<<1);
printf("%d\n",res);
}
return 0;
}
【刷题】BZOJ 2125 最短路的更多相关文章
- BZOJ 2125: 最短路
2125: 最短路 Time Limit: 1 Sec Memory Limit: 259 MBSubmit: 756 Solved: 331[Submit][Status][Discuss] D ...
- bzoj 2125 最短路——仙人掌两点间最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2125 因为看了TJ又抄了标程,现在感觉还是轻飘飘的……必须再做一遍. 两点间的情况: 1.直 ...
- BZOJ.2125.最短路(仙人掌 最短路Dijkstra)
题目链接 多次询问求仙人掌上两点间的最短路径. 如果是在树上,那么求LCA就可以了. 先做着,看看能不能把它弄成树. 把仙人掌看作一个图(实际上就是),求一遍根节点到每个点的最短路dis[i]. 对于 ...
- BZOJ.2125.最短路(仙人掌 圆方树)
题目链接 圆方树.做题思路不写了.. 就是当LCA是方点时跳进那个环可以分类讨论一下用树剖而不必须用倍增: 如果v是u的(唯一的那个)重儿子,那么u的DFS序上+1的点即是要找的:否则v会引出一条新的 ...
- bzoj 2125 最短路 点双 圆方树
LINK:最短路 一张仙人掌图 求图中两点最短路. \(n<=10000,Q<=10000,w>=1\) 考虑边数是多少 m>=n-1 对于一张仙人掌图 考虑先构建出来dfs树 ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
- BZOJ第一页刷题计划
BZOJ第一页刷题计划 已完成:67 / 90 [BZOJ1000]A+B Problem:A+B: [BZOJ1001][BeiJing2006]狼抓兔子:最小割: [BZOJ1002][FJOI2 ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
随机推荐
- odoo之可选择多个内容显示问题
<field name="partner_id" widget="many2many_tags" options="{'no_create': ...
- web窗体的运用
using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace WebAp ...
- Mybatis初步详细配置
1.Mybatis所需包 下载地址:https://github.com/mybatis/mybatis-3/releases,其中log4j是日志包,mysql是数据库所需包,需自行下载 2.项目结 ...
- vijos 1641 Vs Snowy
代码: #include<set> #include<cstdio> #include<cstring> #include<iostream> #inc ...
- 洛咕 P3704 [SDOI2017]数字表格
大力推式子 现根据套路枚举\(\gcd(i,j)\) \(ans=\Pi_{x=1}^nfib[x]^{\sum_{i=1}^{n/x}\sum_{j=1}^{n/x}[\gcd(i,j)=1]}\) ...
- 8、Dockerfile介绍和最佳实践
一.Dockerfile 概念 1.Dockerfile是什么 Docker 镜像是一个特殊的文件系统,除了提供容器运行时所需的程序.库.资源.配置等文件外,还包含了一些为运行时准备的一些配置参数(如 ...
- effective c++ 笔记 (30-31)
//---------------------------15/04/17---------------------------- //#30 透彻了解inlineing的里里外外 { /* 1: ...
- 初级字典树查找在 Emoji、关键字检索上的运用 Part-1
系列索引 Unicode 与 Emoji 字典树 TrieTree 与性能测试 生产实践 前言 通常用户自行修改资料是很常见的需求,我们规定昵称长度在2到10之间.假设用户试图使用表情符号
- 前端菜鸟起飞之学会ps切图
由于之前只顾着追求效率,没有学习过PS,但其实这是前端开发人员需要学会的技能之一,曾经看过一个大佬的前端经验分享说他在招聘时遇到不会切图的会直接pass掉,可见前端开发人员学会切图是多么重要.通过观看 ...
- shellcode 编码技术
在很多漏洞利用场景中, shellcode 的内容将会受到限制. 例如你不能输入 \x00 这个字符,编辑框不能输入 \x0d \x0a这样的字符 所以需要完成 shellcode 的逻辑,然后使用编 ...