下面是几个城市的GDP等信息,根据这些信息,写一个SOM网络,使之对下面城市进行聚类。并且,将结果画在一个二维平面上。

//表1中,X。为人均GDP(元);X2为工业总产值(亿元);X。为社会消费品零售总额(亿元);x。为批发零售贸易总额(亿元);x。为地区货运总量(万吨),表1中数据来自2002年城市统计年鉴。

//城市 X1 X2 X3 Xa X5
北京 27527 2738.30 1494.83 3055.63 30500
青岛 29682 1212.02 182.80 598.06 29068
天津 22073 2663.56 782.33 1465.65 28151
烟台 21017 298.73 92.71 227.39 8178
石家庄 25584 467.42 156.02 763.46 12415
郑州 17330 261.80 215.63 402.98 7373
唐山 19387 338.67 95.73 199.69 14522
武汉 17882 1020.84 685.82 1452 16244
太原 13919 304.13 141.94 155.22 15170
长沙 26327 241.76 269.93 369.83 7550
呼和浩特 13738 82.23 69.27 108.12 2415
衡阳 12386 61.53 63.95 72.65 3004
沈阳 21736 729.04 590.26 1752.4 15156
广州 42828 2446.97 1166.10 3214.19 24500
大连 34659 1003.56 431.83 728.08 19736
深圳 152099 3079.63 609.26 801.06 5167
长春 24799 900.26 309.75 173.99 10346
油头 19414 192.93 112.96 280.84 1443
哈尔滨 20737 402.73 360.38 762.94 8814
湛江 15290 228.45 99.08 149.16 5524
上海 40788 6935.57 1531.89 3921.2 49499
南宁 17715 109.39 142.08 264.32 3371
南京 26697 1579.21 401.20 1253.73 14120
柳州 17598 256.76 68.93 159.44 3397
徐州 19727 295.73 108.17 187.39 7124
海口 24782 100.13 81.03 142.54 2018
连云港 17869 112.18 47.94 134.89 4096
成都 22956 412.23 400.56 754.07 23724
杭州 31784 1615.63 373.28 1788.29 15841
重庆 9778 870.82 389.60 823.72 29470
宁波 46471 751.58 167.70 529.68 11182
贵阳 13176 207.95 108.93 285.27 4885
温州 29781 381.93 233.44 272.84 6292
昆明 24554 303.78 227.44 428.64 12084
合肥 19770 330.14 140.14 328.98 2903
西安 16002 449.14 323.37 558.27 7728
福州 33570 379.51 209.72 613.24 7280
兰州 16629 354.30 163.97 374.9 5401
厦门 42039 803.29 186.55 620.47 2547
西宁 7261 38.00 48.95 91.14 1837
南昌 19923 238.82 14.09 348.21 3246
银川 12779 77.74 41.22 53.16 1573
济南 25642 616.97 323.08 462.39 13057
乌鲁木齐 19793 251.19 129.05 277.8 9283

首先,利用python对这些数据进行处理,具体过程如下:

1,读入文件

2,使用1000,100,10,1三个数字分别替换x1列的数值,判断的标准为中位数和两个四分位数。

3,代替x2列的数值

4,替换x3列的数值

5,替换Xa列的数值

6,替换X5列的数值

最终得到的结果:

excel排序算分段值截图:

应该可以用四分位数直接可以得到这些数字,这里操作的稍微的麻烦了一点。

聚类的java的代码:

package com.cgjr.som;

import org.neuroph.core.Neuron;
import org.neuroph.core.data.DataSet;
import org.neuroph.core.data.DataSetRow;
import org.neuroph.nnet.Kohonen; public class AreaClutering { public static double[][] data = {
{ 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1}, //北京
{ 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1}, //青岛
{ 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1},//天津
{ 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0},//烟台
{ 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0},//石家庄
{ 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0},//郑州
{ 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0},//唐山
{ 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1}, //武汉
{ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,1}, //太原
{ 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,1,0,0}, //长沙
{ 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0}, //呼和浩特
{ 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0}, //衡阳
{ 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0}, //沈阳
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1}, //广州
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1}, //大连
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,0}, //深圳
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,1,0}, //长春
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0}, //油头
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0}, //哈尔滨
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0}, //湛江
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1}, //上海
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0}, //南宁
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0}, //南京
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0}, //柳州
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0}, //徐州
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0}, //海口
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0}, //连云港
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,1}, //成都
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1}, //杭州
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1}, //重庆
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0}, //宁波
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0}, //贵阳
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0}, //温州
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0}, //昆明
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0}, //合肥
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0},//西安
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0}, //福州
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0}, //兰州
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,1,0,0,0}, //厦门
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0}, //西宁
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0}, //南昌
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0}, //银川
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0}, //济南
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0}, //乌鲁木齐 }; public static String[] dataKey={"北京","青岛","天津","烟台","石家庄","郑州","唐山","武汉","太原","长沙","呼和浩特",
"衡阳","沈阳","广州","大连","深圳","长春","油头","哈尔滨","湛江","上海","南宁",
"南京","柳州","徐州","海口","连云港","成都","杭州","重庆","宁波","贵阳","温州",
"昆明","合肥","西安","福州","兰州","厦门","西宁","南昌","银川","济南","乌鲁木齐"}; public static void main(String[] args) {
ResultFrame frame = new ResultFrame();
Kohonen som = new Kohonen(64, 100);
DataSet ds = new DataSet(64);
for (double[] row : data) {
ds.addRow(new DataSetRow(row));
} som.learn(ds); for (int i=0;i<data.length;i++) {
som.setInput(data[i]);
som.calculate();
int winnerIndex=getWinnerIndex(som);
int x=getRowFromIndex(winnerIndex);
int y=getColFromIndex(winnerIndex);
System.out.println(dataKey[i]+" "+x+" "+y );
frame.addElementString(new ResultFrame.ElementString(dataKey[i], x, y));
}
frame.showMe();
} // get unit with closetst weight vector
private static int getWinnerIndex(Kohonen neuralNetwork) {
Neuron winner = new Neuron();
double minOutput = 100;
int winnerIndex=-1;
Neuron[] neurons=neuralNetwork.getLayerAt(1).getNeurons();
for (int i=0;i<neurons.length;i++) {
double out = neurons[i].getOutput();
if (out < minOutput) {
minOutput = out;
winnerIndex = i;
} // if
} // while
return winnerIndex;
} /**
* 10行10列中的位置
* @param index
* @return
*/
private static int getRowFromIndex(int index){
return index/10+1;
}
private static int getColFromIndex(int index){
return index%10+1;
} }
package com.cgjr.som;

import java.awt.Font;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.util.ArrayList;
import java.util.List; import javax.swing.JFrame;
import javax.swing.JPanel; public class ResultFrame extends JFrame {
private List<ElementString> elements=new ArrayList<ElementString>(); public ResultFrame() {
} private void init() {
setTitle("训练结果");
setSize(800, 800);
DrawPanel panel = new DrawPanel();
add(panel);
} public void showMe(){
if(elements.size()==0)throw new RuntimeException("elements is empty");
init();
normalCood();
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
} public void addElementString(ElementString str){
elements.add(str);
} public void normalCood(){
float minX=Float.MAX_VALUE,maxX=0,minY=Float.MAX_VALUE,maxY=0;
for(ElementString es:elements){
if(es.x>maxX)maxX=es.x;
if(es.y>maxY)maxY=es.y;
if(es.x<minX)minX=es.x;
if(es.y<minY)minY=es.y;
}
for(ElementString es:elements){
es.x=(es.x-minX)/(maxX-minX)*700+20;
es.y=(es.y-minY)/(maxY-minY)*700+20;
}
} public static void main(String[] args) {
ResultFrame frame = new ResultFrame();
frame.showMe();
} class DrawPanel extends JPanel {
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;//将Graphics对象转换为Graphics2D对象
g2.setFont(new Font("TimesRoman", Font.PLAIN, 20));
for(ElementString es:elements){
g2.drawString(es.text, es.x, es.y);
}
}
} public static class ElementString{
private String text;
private float x;
private float y; public ElementString(String text, float x, float y) {
super();
this.text = text;
this.x = x;
this.y = y;
}
public String getText() {
return text;
}
public void setText(String text) {
this.text = text;
}
public float getX() {
return x;
}
public void setX(float x) {
this.x = x;
}
public float getY() {
return y;
}
public void setY(float y) {
this.y = y;
}
}
}

运行效果的截图:

SOM网络聚类完整示例(利用python和java)的更多相关文章

  1. 智能客服 利用python运行java代码

    因为需要在linux中用python来进行分析,顾需要利用python来运行java中语音转文字和文字转语音代码 在python中运行java代码需要利用jpype

  2. Python中利用原始套接字进行网络编程的示例

    Python中利用原始套接字进行网络编程的示例 在实验中需要自己构造单独的HTTP数据报文,而使用SOCK_STREAM进行发送数据包,需要进行完整的TCP交互. 因此想使用原始套接字进行编程,直接构 ...

  3. 如何利用Python网络爬虫抓取微信朋友圈的动态(上)

    今天小编给大家分享一下如何利用Python网络爬虫抓取微信朋友圈的动态信息,实际上如果单独的去爬取朋友圈的话,难度会非常大,因为微信没有提供向网易云音乐这样的API接口,所以很容易找不到门.不过不要慌 ...

  4. 如何利用Python网络爬虫爬取微信朋友圈动态--附代码(下)

    前天给大家分享了如何利用Python网络爬虫爬取微信朋友圈数据的上篇(理论篇),今天给大家分享一下代码实现(实战篇),接着上篇往下继续深入. 一.代码实现 1.修改Scrapy项目中的items.py ...

  5. 【转】利用python的KMeans和PCA包实现聚类算法

    转自:https://www.cnblogs.com/yjd_hycf_space/p/7094005.html 题目: 通过给出的驾驶员行为数据(trip.csv),对驾驶员不同时段的驾驶类型进行聚 ...

  6. 利用python的KMeans和PCA包实现聚类算法

    题目: 通过给出的驾驶员行为数据(trip.csv),对驾驶员不同时段的驾驶类型进行聚类,聚成普通驾驶类型,激进类型和超冷静型3类 . 利用Python的scikit-learn包中的Kmeans算法 ...

  7. 利用Python网络爬虫爬取学校官网十条标题

    利用Python网络爬虫爬取学校官网十条标题 案例代码: # __author : "J" # date : 2018-03-06 # 导入需要用到的库文件 import urll ...

  8. Python 利用Python编写简单网络爬虫实例3

    利用Python编写简单网络爬虫实例3 by:授客 QQ:1033553122 实验环境 python版本:3.3.5(2.7下报错 实验目的 获取目标网站“http://bbs.51testing. ...

  9. Python 利用Python编写简单网络爬虫实例2

    利用Python编写简单网络爬虫实例2 by:授客 QQ:1033553122 实验环境 python版本:3.3.5(2.7下报错 实验目的 获取目标网站“http://www.51testing. ...

随机推荐

  1. 兼容主流浏览器的js原生函数封装

    1.获取和修改垂直滚动条的滚动距离 //获取滚动条滚动距离function getScrollTop(){ var fromTop=document.documentElement.scrollTop ...

  2. iOS用户行为追踪——无侵入埋点

    本文章系作者原创文章,如需转载学习,请注明该文章的原始出处和网址链接.  在阅读的过程中,如若对该文章有不懂或值得优化的建议,欢迎大家加QQ:690091622 进行技术交流和探讨. 前言:  前几日 ...

  3. parentNode和parentElement区别

    parentNode跟parentElement除了前者是w3c标准,后者只ie支持 当父节点的nodeType不是1,即不是element节点的话,它的parentElement就会是null 一般 ...

  4. 2.4G无线收发模块/射频RFM75调试总结/RF知识整理

    射频RFM75通信是收发双方都需要编程的器件,收发双方的通道频率,空中传输速率设置一致,调试时必须先调通一块再调另一块,否则出现问题了就不知道是发送端有问题还是接收端有问题.调试必须理清思路.正确的方 ...

  5. require include 一个隐藏的用法:作用域。

    最近在研究php底层框架,奇怪的一点.控制器里为什么要把从model里获取的数据 需要$this->assign('items', $items); 这种形式模板文件里才可以调用到这个变量.控制 ...

  6. python之smtplib发邮件

    第一版: 认证发信,不支持附件 #!/usr/bin/env python # --------------------------------------- # author : Geng Jie ...

  7. 如何查看sql server端口号

    通过sql server配置管理器-->sql server网络配置-->选择-->通过右侧选择TCP/IP(已启用)-->查看属性 还可以通过sql语句查看: exec sy ...

  8. MongoDB基础教程系列--第四篇 MongoDB 查询文档

    查询文档 查询文档可以用 find() 方法查询全部文档,可以用 findOne() 查询第一个文档,当然还可以根据 条件操作符 和 $type操作符 查询满足条件的文档. find() 和 find ...

  9. 玩转 SSH(七):使用 dubbo + zookeeper 实现服务模块化

    一.创建 SSMVCAnnoDemo 项目 点击菜单,选择“File -> New Project” 创建新项目.选择使用 archetype 中的 maven-quickstart 模版创建. ...

  10. K近邻 Python实现 机器学习实战(Machine Learning in Action)

    算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...