机器学习小记——KNN(K近邻) ^_^ (一)
为了让绝大多数人都可以看懂,所以我就用简单的话语来讲解机器学习每一个算法
第一次写ML的博文,所以可能会有些地方出错,欢迎各位大佬提出意见或错误
祝大家开心进步每一天~
博文代码全部为python
简单的说一下什么是机器学习,机器学习英文名称是Machine Learning, ML
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
机器学习学习形式可分为监督学习,监督学习,半监督学习和强化学习
KNN(k-Nearest Neighbor)中文名为K近邻,是分类算法的一种,KNN的思路为在在数据和标签已知的情况下将测试数据的特征和训练集中的特征进行比较,找到与之最相似的k的数据,那么这个数据对应的类别就是k个数据中出现次数最多的那个类别
寻找相似度有多重方法,最常用的为欧几里得度量,皮尔逊相关系数,余弦相似度
算法流程大致分为
1)计算测试数据与各个训练数据之间的距离;
2)按照距离的递增关系进行排序;
3)选取距离最小的K个点;
4)确定前K个点所在类别的出现频率;
5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。
本文使用iris数据集,可从UCI处下载 传送门
使用py的三种库pandas,numpy,sklearn
查看数据集

前4列为特征,最后一列为标签
#获取数据
X=np.loadtxt("/Users/galan/py/ML-D/iris.data.txt",delimiter=",",dtype=float,usecols=(0,1,2,3))
y=np.loadtxt("/Users/galan/py/ML-D/iris.data.txt",delimiter=",",dtype=str,usecols=(4,))
#创建训练数据和测试数据
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=.7)
第2,3行为获取特征和标签
第五行中使用sklearn库的train_test_split函数,用来方便分隔测试集和训练集
本文使用欧几里得度量算法,在下方也会列出皮尔逊相似性和余弦相似度的py代码
欧几里得度量多为计算空间中两点间的距离
表达式为 |x| = √( x[1]2 + x[2]2 + … + x[n]2 )
代码表现形式为 [(p1-q1)**2+(p2-q2)**2+...+(pn-qn)**2]**0.5
def eculidean(p,q):
sumSq=0.0
#讲差值德平方累加起来
for i in range(len(p)):
sumSq+=sum(p[i]-q[i])**2
#求平方根
return (sumSq**0.5)
皮尔逊相关系数是度量两个变量之间相关程度,介于-1和1之间,1代表变量完全正相关,0代表无关,-1代表完全负关系
def pearson(x,y):
n=len(x)
vals=range(n)
#简单求和
sumx=sum([float(x[i]) for i in vals])
sumy=sum([float(y[i]) for i in vals])
#求平方和
sumxSq=sum([x[i]**2.0 for i in vals])
sumySq=sum([y[i]**2.0 for i in vals])
#求乘积之和
pSum=sum([x[i]*y[i] for i in vals])
#计算皮尔逊评价值
num=pSum-(sumx*sumy/n)
den=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5
if den==0:return 1 r=num/den
return r
余弦相似度将向量根据坐标值,绘制到向量空间中求得他们的夹角,并得出夹角对应的余弦值,夹角越小,余弦值越接近于1,它们的方向更加吻合,则越相似。
#vect1,vect2位两个一维向量如(1,1)
def getCost(vect1,vect2):
sum_x=0.0
sum_y=0.0
sum_xy=0.0
for a,b in zip(vect1,vect2):
sum_xy+=a*b
sum_x+=a**2
sum_y+=b**2
if sum_x==0.0 or sum_y==0.0:
return None
else:
return sum_xy/((sum_x*sum_y)**0.5)
knn的求证过程
#K值
k=5
#计算所有的欧氏距离组合成字典
Dists={}
for i in range(len(X_train)):
Dists[eculidean(X_test[0],X_train[i])]=y_train[i]
#排序字典
sortedDist=sorted(Dists.iteritems(),reverse=True,key=lambda x:x[0])[:k]
classCount={}
#寻找最多的类别标签
for i in sortedDist:
if i[1] in classCount:
classCount[i[1]]+=1
else:
classCount[i[1]]=1
print classCount
下面贴出所有的代码
#coding:utf-8
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split #获取数据
X=np.loadtxt("./ML-D/iris.data.txt",delimiter=",",dtype=float,usecols=(0,1,2,3))
y=np.loadtxt("./ML-D/iris.data.txt",delimiter=",",dtype=str,usecols=(4,))
#创建训练数据和测试数据
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=.7) def eculidean(p,q):
sumSq=0.0
#讲差值德平方累加起来
for i in range(len(p)):
sumSq+=sum(p-q[i])**2
#求平方根
return (sumSq**0.5) def classify(X_train,X_test,k):
#计算所有的欧氏距离
Dists={}
for i in range(len(X_train)):
Dists[eculidean(X_test,X_train[i])]=y_train[i]
#排序字典
sortedDist=sorted(Dists.iteritems(),reverse=True,key=lambda x:x[0])[:k]
classCount={}
#寻找最多的类别标签
for i in sortedDist:
if i[1] in classCount:
classCount[i[1]]+=1
else:
classCount[i[1]]=1
return sorted(classCount.iteritems(),key=lambda x:x[1],reverse=True) if __name__ == '__main__':
print "%s的类别为%s"%(X_test[15],classify(X_train,X_test[0],5)[0][0])
我会每周更新一篇ML博文,方便大家学习,^_^ 共同学习共同提高,欢迎大家前来对我的文章提出宝贵意见
祝大家周末愉快~
机器学习小记——KNN(K近邻) ^_^ (一)的更多相关文章
- web安全之机器学习入门——3.1 KNN/k近邻
目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell skl ...
- 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...
- 机器学习实战python3 K近邻(KNN)算法实现
台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python ...
- 基本分类方法——KNN(K近邻)算法
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
- 机器学习 Python实践-K近邻算法
机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 机器学习算法之K近邻算法
0x00 概述 K近邻算法是机器学习中非常重要的分类算法.可利用K近邻基于不同的特征提取方式来检测异常操作,比如使用K近邻检测Rootkit,使用K近邻检测webshell等. 0x01 原理 ...
- KNN K~近邻算法笔记
K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...
随机推荐
- Codeforces Round #257 (Div. 2) A. Jzzhu and Children(简单题)
题目链接:http://codeforces.com/problemset/problem/450/A ------------------------------------------------ ...
- 通过c# 实现mysql 数据库的备份和附加
近期涉及到通过c# 对mysq数据库的备份和附件功能 由于mysql 有类似的备份和附加的cmd命令.可是一直没用过,今天实践了下,感觉效率挺快.比自己写的效率高.以下我列出c#调用mysql的备份和 ...
- Eclipse的Servers视图中无法加入Tomcat6/Tomcat7
引言: 在基于Eclipse的开发过程中,出现了无法在Eclipse中加入Tomcat的问题,经过从网上搜索之后.找到了答案. 问题的提出: 无法从下面方式,加入Tomcatserver. 当中Se ...
- web常见效果之轮播图
轮播图的展示效果是显而易见: HTML代码如下 <!DOCTYPE html> <html> <head> <meta charset="UTF-8 ...
- Ubuntu 下 libgps 库的使用
简介 一般 GPS 接收器会遵循美国国家海洋电子协会(National Marine Electronics Association)所指定的标准规格,其中包含传输资料的格式以及传输资料的通讯协议.那 ...
- jsp的标签库和自定义标签
1.jstl标签库 JSP标准标签库(JSTL)是一个JSP标签集合,它封装了JSP应用的通用核心功能. JSTL支持通用的.结构化的任务,比如迭代,条件判断,XML文档操作,国际化标签,SQL标签. ...
- json api
from flask import Flask, redirect, url_for, jsonify, request app = Flask(__name__) users = [] ''' RE ...
- 微信小程序路过
应该算是入门篇, 从我怎么0基础然后沿着什么方向走,遇到的什么坑,如何方向解决,不过本人接触不是很多,所以也就了解有限. 小程序的前提: 1.小程序大小不允许超过2M.(也就是本地图片,大图精图不要在 ...
- MVC+EF 入门教程(二)
一.前沿 为了使以后项目分开,所以我会添加3个类库.用于存储 实体.数据库迁移.服务.这种思路是源于我使用的一个框架 ABP.有兴趣的您,可以去研究和使用这个框架. 二.修改本地连接 在项目中,找到 ...
- android JSON解析 fastjson和gson的使用
User user = new User(); user.setPhone("11111111"); user.setNmae("张三"); user.setP ...