[BZOJ]1042 硬币购物(HAOI2008)
失踪OJ回归。
小C通过这道题mark一下容斥一类的问题。
Description
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s的价值的东西。请问每次有多少种付款方法。
Input
第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s。
Output
每次的方法数。
Sample Input
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
Sample Output
4
27
HINT
di,s<=100000,tot<=1000。
Solution
O(s*tot)的DP算法谁都会写,但是看着这时间复杂度你难道不虚吗?
你难道甘愿被卡常而就此丢掉10分或是在刷题时打一个这样的暴力草草了事而对其中的精妙不闻不问,你的良心不会痛吗?
如果你在解题时看到题目中有常数a(a<20)这样的数据,不妨就往O(2a)这样复杂度的算法去想一想。
因为题目中有一个常数4,而且还都是限制条件,所以我们就往状压、容斥这方面去想。
显然状压是不可能的,于是我们就只有容斥了。
首先我们要知道容斥在这道题是干嘛用的:
容斥就是对多个限制条件下方案的去重工作,也就是你们所熟知的,求多个集合的并集。
容斥常常伴随的思想是一种逆向思维,就是题目往往要求我们去求多个集合的交,然而我们并没有好的办法,转而跑去求各个集合的补的并,再补回来就是各个集合的交。
我们需要理解在这个算法中, 交 是可以O(1)求得的,然而 并 需要用容斥求得。
所以解这样的题目的大致思路就是:
题目要求我们求A1~An的交,但是我们发现很难求;
所以我们去求CuA1~CuAn的并,而CuA1~CuAn的并需要我们求CuA1~CuAn的交,但是我们发现CuA1~CuAn的交特别好求,所以我们就圆满地解决了这个问题。
运用这样的思路,我们就可以很快解出这道题。
所以我们要求的只剩,在这次购物中,第 i 种硬币用了超过di的方案数。
脑补一下,我们就知道,我们只要每种硬币先取到它们限制的数量+1,剩下随便取就可以了,这样的方案无论如何都是满足每种硬币都超过限制的。
所以用一句话概括题解:容斥,求f[s-Σ(ci*(di+1))],f[x]为在没有任何限制下,取硬币得到面值x的方案数。
时间复杂度O(max(s)*4+tot*16)。注意答案最大为C(s,4)会爆int。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define MM 100005
using namespace std;
int n,m;
int a[],g[],ys[];
ll f[MM],lt,ans;
bool u; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i,j;
a[]=read(); a[]=read(); a[]=read(); a[]=read(); n=read();
f[]=ys[]=; ys[]=; ys[]=; ys[]=;
for (i=;i<=;++i)
for (j=a[i];j<MM;++j) f[j]+=f[j-a[i]];
while (n--)
{
g[]=read(); g[]=read(); g[]=read(); g[]=read(); m=read();
ans=;
for (i=;i<;++i)
{
for (u=lt=,j=;j<=;++j)
if (i&ys[j]) u^=,lt+=1LL*a[j]*(g[j]+);
if (lt>m) continue;
ans+=(f[m-lt])*(u?-:);
}
printf("%lld\n",ans);
}
}
Last Word
大概就是小C关于容斥的一点点想法,当然这样的题目还有很多无法以偏概全。希望这样的思路能对以后有一点帮助吧。
[BZOJ]1042 硬币购物(HAOI2008)的更多相关文章
- BZOJ 1042 硬币购物(完全背包+DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d ...
- BZOJ 1042 硬币购物(背包DP+容斥原理)
可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE. 因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数. 我们不妨不考虑 ...
- BZOJ 1042 硬币购物
先不考虑限制,那么有dp[i]表示i元钱的方案数. 然后考虑限制,发现可以容斥. 其实整个题就是两个容斥原理.感觉出的蛮好的. #include<iostream> #include< ...
- 【BZOJ】【1042】【HAOI2008】硬币购物
DP+容斥原理 sigh……就差一点…… 四种硬币的数量限制就是四个条件,满足条件1的方案集合为A,满足条件2的方案集合为B……我们要求的就是同时满足四个条件的方案集合$A\bigcap B\bigc ...
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]
1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...
- 【BZOJ】1042: [HAOI2008]硬币购物
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3307 Solved: 2075[Submit][Stat ...
随机推荐
- 400多个开源项目以及43个优秀的Swift开源项目-Swift编程语言资料大合集
Swift 基于C和Objective-C,是供iOS和OS X应用编程的全新语言,更加高效.现代.安全,可以提升应用性能,同时降低开发难度. Swift仍然处于beta测试的阶段,会在iOS 8发布 ...
- webView调用系统地图,电话,和跳转链接的方法
webView.dataDetectorTypes = UIDataDetectorTypePhoneNumber | UIDataDetectorTypeLink | UIDataDetectorT ...
- JAVA_SE基础——71.Random类制作随机验证码
public class Demo5 { public static void main(String[] args) { char[] arr={'s','b','g','h','a','c'}; ...
- python全栈开发-logging模块(日记专用)
一.概述 很多程序都有记录日志的需求,并且日志中包含的信息即有正常的程序访问日志,还可能有错误.警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,l ...
- OAuth是什么?
一.OAuth的概念 1.问题的提出 2.应用场景 3.规范演进 二.OAuth的运行原理 1.参与者 访问私有数据需要用户参与(客户.用户.服务提供者) 访问公共数据不需要用户参与(客户.服务提供者 ...
- Docker学习笔记 - Docker的镜像
一个容器实际上是运行在宿主机上的一个进程. 只不过在启动这个进程之前进行了一些特殊处理,让这个容器进入了一个全新的虚拟环境,与宿主机的环境分开, 所以这个进程及其子进程认为自己运行在一个独立的世界里面 ...
- 阿里云API网关(9)常见问题
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- Python学习之参数
参数 # coding=utf-8 # 函数的参数 def power(x): return x * x; print power(5) 修改后 def power_1(x,n=2): #默认参数可以 ...
- Python之格式化输出,初始编码以及运算符
一.题型 1.使用while循环输入 1 2 3 4 5 6 8 9 10 count = 0 while count < 10: count += 1 #count = count + ...
- Java中对List去重, Stream去重
问题 当下互联网技术成熟,越来越多的趋向去中心化.分布式.流计算,使得很多以前在数据库侧做的事情放到了Java端.今天有人问道,如果数据库字段没有索引,那么应该如何根据该字段去重?大家都一致认为用Ja ...