[BZOJ]1042 硬币购物(HAOI2008)
失踪OJ回归。
小C通过这道题mark一下容斥一类的问题。
Description
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s的价值的东西。请问每次有多少种付款方法。
Input
第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s。
Output
每次的方法数。
Sample Input
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
Sample Output
4
27
HINT
di,s<=100000,tot<=1000。
Solution
O(s*tot)的DP算法谁都会写,但是看着这时间复杂度你难道不虚吗?
你难道甘愿被卡常而就此丢掉10分或是在刷题时打一个这样的暴力草草了事而对其中的精妙不闻不问,你的良心不会痛吗?
如果你在解题时看到题目中有常数a(a<20)这样的数据,不妨就往O(2a)这样复杂度的算法去想一想。
因为题目中有一个常数4,而且还都是限制条件,所以我们就往状压、容斥这方面去想。
显然状压是不可能的,于是我们就只有容斥了。
首先我们要知道容斥在这道题是干嘛用的:
容斥就是对多个限制条件下方案的去重工作,也就是你们所熟知的,求多个集合的并集。
容斥常常伴随的思想是一种逆向思维,就是题目往往要求我们去求多个集合的交,然而我们并没有好的办法,转而跑去求各个集合的补的并,再补回来就是各个集合的交。
我们需要理解在这个算法中, 交 是可以O(1)求得的,然而 并 需要用容斥求得。
所以解这样的题目的大致思路就是:
题目要求我们求A1~An的交,但是我们发现很难求;
所以我们去求CuA1~CuAn的并,而CuA1~CuAn的并需要我们求CuA1~CuAn的交,但是我们发现CuA1~CuAn的交特别好求,所以我们就圆满地解决了这个问题。
运用这样的思路,我们就可以很快解出这道题。
所以我们要求的只剩,在这次购物中,第 i 种硬币用了超过di的方案数。
脑补一下,我们就知道,我们只要每种硬币先取到它们限制的数量+1,剩下随便取就可以了,这样的方案无论如何都是满足每种硬币都超过限制的。
所以用一句话概括题解:容斥,求f[s-Σ(ci*(di+1))],f[x]为在没有任何限制下,取硬币得到面值x的方案数。
时间复杂度O(max(s)*4+tot*16)。注意答案最大为C(s,4)会爆int。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define MM 100005
using namespace std;
int n,m;
int a[],g[],ys[];
ll f[MM],lt,ans;
bool u; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i,j;
a[]=read(); a[]=read(); a[]=read(); a[]=read(); n=read();
f[]=ys[]=; ys[]=; ys[]=; ys[]=;
for (i=;i<=;++i)
for (j=a[i];j<MM;++j) f[j]+=f[j-a[i]];
while (n--)
{
g[]=read(); g[]=read(); g[]=read(); g[]=read(); m=read();
ans=;
for (i=;i<;++i)
{
for (u=lt=,j=;j<=;++j)
if (i&ys[j]) u^=,lt+=1LL*a[j]*(g[j]+);
if (lt>m) continue;
ans+=(f[m-lt])*(u?-:);
}
printf("%lld\n",ans);
}
}
Last Word
大概就是小C关于容斥的一点点想法,当然这样的题目还有很多无法以偏概全。希望这样的思路能对以后有一点帮助吧。
[BZOJ]1042 硬币购物(HAOI2008)的更多相关文章
- BZOJ 1042 硬币购物(完全背包+DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d ...
- BZOJ 1042 硬币购物(背包DP+容斥原理)
可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE. 因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数. 我们不妨不考虑 ...
- BZOJ 1042 硬币购物
先不考虑限制,那么有dp[i]表示i元钱的方案数. 然后考虑限制,发现可以容斥. 其实整个题就是两个容斥原理.感觉出的蛮好的. #include<iostream> #include< ...
- 【BZOJ】【1042】【HAOI2008】硬币购物
DP+容斥原理 sigh……就差一点…… 四种硬币的数量限制就是四个条件,满足条件1的方案集合为A,满足条件2的方案集合为B……我们要求的就是同时满足四个条件的方案集合$A\bigcap B\bigc ...
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]
1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...
- 【BZOJ】1042: [HAOI2008]硬币购物
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3307 Solved: 2075[Submit][Stat ...
随机推荐
- 实验二Java面向对象程序设计实验报告(2)
实验二 Java面向对象程序设计 实验概述: 课程:程序设计与数据结构 班级:1623班 姓名: 邢天岳 学号:2309 指导老师:娄老师 王老师 实验日期:2017.4.16 实验名称: Java面 ...
- 标准C++类std::string的内存共享和Copy-On-Write(写时拷贝)
标准C++类std::string的内存共享,值得体会: 详见大牛:https://www.douban.com/group/topic/19621165/ 顾名思义,内存共享,就是两个乃至更多的对象 ...
- 视频聊天插件:AnyChat使用攻略之iOS开发指南
AnyChat使用攻略之iOS开发指南 这套攻略主要指导刚开始使用AnyChat SDK For iOS的同学,快速搭建SDK环境,和实现音视频开发流程. (需要工程案例文件可联系我们) 在iOS平台 ...
- JAVA中最容易让人忽视的基础。
可能很多找编程工作的人在面试的时候都有这种感受,去到一个公司填写面试试题的时候,多数人往往死在比较基础的知识点上.不要奇怪,事实就是如此一般来说,大多数公司给出的基础题大概有122道,代码题19道左右 ...
- MongoDB启动客户端和服务端
要在MongoDB安装(我安装在D盘)的目录的根目录下,先建data目录,然后data目录下再建db目录(结果:D:\data\db). 然后cmd进入bin目录,执行.\mongod.exe启动服务 ...
- Oracle数据库游标精解
游标 定义:标识结果集中数据行的一种容器(CURSOR),游标允许应用程序对查询语句返回的行结果集中的每一行进行相同或不同的操作,而不是一次对整个结果集进行同一种操作.实际上是一种能从包括多条数据记录 ...
- Vue.js和jQuery混合使用的一点注意事项
首先,Vue 的官方是不建议直接操作 DOM 的,其优势在于视图和数据的双向绑定,而且所有DOM操作都可以用Vue实现,反而使用jQuery来操作DOM的话,会造成不必要的麻烦,DOM未渲染完成之前事 ...
- sts 和 lombok
1.安装lombok.jar到sts.exe所在目录 如果是eclipse,需要放到eclipse.exe所在目录,同理myeclipse. 2.修改sts.ini配置使用lombok 如果是ecli ...
- 基于python的统计公报关键数据爬取 update
由于之前存在的难以辨别市本级,全市相关数据的原因,经过考虑采用 把含有关键词的字段全部提取进行人工辨别的方法 在其余部分不改变的情况下,更改test部分 def test(real_Title,rea ...
- jsp和servlet的区别和联系
jsp和servlet的区别和联系:1.jsp经编译后就变成了Servlet.(JSP的本质就是Servlet,JVM只能识别java的类,不能识别JSP的代码,Web容器将JSP的代码编译成JVM能 ...