Padding

在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5。这样的好处有两点:

  • 在特征图(二维卷积)中就会存在一个中心像素点。有一个中心像素点会十分方便,便于指出过滤器的位置。

  • 在没有padding的情况下,经过卷积操作,输出的数据维度会减少。以二维卷积为例,输入大小 \(n\times n\),过滤器大小\(f\times f\),卷积后输出的大小为\((n-f+1)\times(n-f+1)\)。
  • 为了避免这种情况发生,可以采取padding操作,padding的长度为\(p​\),由于在二维情况下,上下左右都“添加”长度为\(p​\)的数据。构造新的输入大小为\((n+2p)\times(n+2p)​\) , 卷积后的输出变为\((n+2p-f+1)\times(n+2p-f+1)​\)。
  • 如果想使卷积操作不缩减数据的维度,那么\(p\)的大小应为\((f-1)/2\),其中\(f\)是过滤器的大小,该值如果为奇数,会在原始数据上对称padding,否则,就会出现向上padding 1个,向下padding 2个,向左padding 1个,向右padding 2个的情况,破坏原始数据结构。

Stride

卷积中的步长大小为\(s\),指过滤器在输入数据上,水平/竖直方向上每次移动的步长,在Padding 公式的基础上,最终卷积输出的维度大小为:

\[\left \lfloor \frac{n+2p-f}{s}+1 \right \rfloor \times \left \lfloor \frac{n+2p-f}{s}+1 \right \rfloor\]

\(\left \lfloor \right\rfloor\)符号指向下取整,在python 中为floor地板除操作。

Channel

通道,通常指数据的最后一个维度(三维),在计算机视觉中,RGB代表着3个通道(channel)。

  • 举例说明:现在有一张图片的大小为\(6\times 6\times 3\),过滤器的大小为\(3\times 3\times n_c\), 这里\(n_c\)指过滤器的channel大小,该数值必须与输入的channel大小相同,即\(n_c=3\)。
  • 如果有\(k\)个\(3\times 3\times n_c\)的过滤器,那么卷积后的输出维度为\(4\times 4\times k\)。注意此时\(p=0, s=1\),\(k\)表示输出数据的channel大小。一般情况下,\(k\)代表\(k\)个过滤器提取的k个特征,如\(k=128\),代表128个\(3\times 3\)大小的过滤器,提取了128个特征,且卷积后的输出维度为\(4\times 4\times 128\)。

在多层卷积网络中,以计算机视觉为例,通常情况下,图像的长和宽会逐渐缩小,channel数量会逐渐增加。

Pooling

  • 除了卷积层,卷积网络使用池化层来缩减数据的大小,提高计算的速度 ,同时提高所提取特征的鲁棒性。 池化操作不需要对参数进行学习,只是神经网络中的静态属性。
  • 池化层中,数据的维度变化与卷积操作类似。池化后的channel数量与输入的channel数量相同,因为在每个channel上单独执行最大池化操作。
  • f=2, s=2,相当于对数据维度的减半操作,f指池化层过滤器大小,s指池化步长。

卷积神经网络示例

一个用于手写数字识别的CNN结构如下图所示:

该网络应用了两层卷积,并且在第二个池化层之后又接了几个全连接层,这样做的目的是避免某一层的激活值数量减少的太快,具体原因后文解释。

具体参数数量可视化如下所示:

从图中可以发现,卷积层的参数数量较小,大部分参数集中在全连接层。而且随着网络层的加深,激活值数量逐渐减少,如果激活值数量下降太快,会影响网络的性能。因此需要构建多个全连接层,而不是一个全连接层一步到位。

卷积层的好处

与只用全连接层相比,卷积层的主要优点是参数共享稀疏连接,这使得卷积操作所需要学习的参数数量大大减少。

吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(一)的更多相关文章

  1. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  2. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)

    作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十 ...

  3. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(二)

    经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络.网络深度逐渐增加,训练的参数数量也骤增.AlexNet大约6000万参数,VGG大约上亿参数. 从中我们可 ...

  4. 吴恩达深度学习笔记(deeplearning.ai)之循环神经网络(RNN)(三)

    1. 导读 本节内容介绍普通RNN的弊端,从而引入各种变体RNN,主要讲述GRU与LSTM的工作原理. 事先声明,本人采用ng在课堂上所使用的符号系统,与某些学术文献上的命名有所不同,不过核心思想都是 ...

  5. 吴恩达深度学习笔记(八) —— ResNets残差网络

    (很好的博客:残差网络ResNet笔记) 主要内容: 一.深层神经网络的优点和缺陷 二.残差网络的引入 三.残差网络的可行性 四.identity block 和 convolutional bloc ...

  6. 吴恩达深度学习笔记(十二)—— Batch Normalization

        主要内容: 一.Normalizing activations in a network 二.Fitting Batch Norm in a neural network 三.Why does ...

  7. 吴恩达深度学习笔记(七) —— Batch Normalization

    主要内容: 一.Batch Norm简介 二.归一化网络的激活函数 三.Batch Norm拟合进神经网络 四.测试时的Batch Norm 一.Batch Norm简介 1.在机器学习中,我们一般会 ...

  8. 吴恩达深度学习笔记1-神经网络的编程基础(Basics of Neural Network programming)

    一:二分类(Binary Classification) 逻辑回归是一个用于二分类(binary classification)的算法.在二分类问题中,我们的目标就是习得一个分类器,它以对象的特征向量 ...

  9. 吴恩达深度学习笔记(十一)—— dropout正则化

    主要内容: 一.dropout正则化的思想 二.dropout算法流程 三.dropout的优缺点 一.dropout正则化的思想 在神经网络中,dropout是一种“玄学”的正则化方法,以减少过拟合 ...

随机推荐

  1. 2017ecjtu-summer training #6 Gym 100952D

    D. Time to go back time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  2. SpringMVC框架学习笔记(5)——数据处理

    1.提交数据的处理 a)提交的域名称和参数名称一致 http://localhost:8080/foward/hello.do?name=zhangsan 处理方法 @RequestMapping(v ...

  3. 【Git】Git基础操作

    repository:版本库又名仓库,可以简单理解成一个目录,这个目录里面的所有文件都可以被Git管理起来,每个文件的修改.删除,Git都能跟踪,以便任何时刻都可以追踪历史,或者在将来某个时刻可以&q ...

  4. 动态计算rem的js代码

    以最小1024尺寸为例: function rem() { var htmlEle = document.documentElement; var winWidth = htmlEle.clientW ...

  5. HDU 5914 Triangle(打表——斐波那契数的应用)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5914 Problem Description Mr. Frog has n sticks, whos ...

  6. vuex的使用

    vue现在越来越火,不单单可以写简单的小项目,也可以写大中型的项目.但是项目大了,项目之间的数据传递就会变得复杂,那么问题来了?在一个大型项目中,多个组件要公用同一个或多个数据,我们如何保证每个组件获 ...

  7. MVC编程实例----简易电子商务网站(一)

    一.总体概览.规划 本文将会创建一个基本的电子商务网站.由于电子商务网站的基本功能都是差不多的,此处省去了需求分析等工作,直接总结出结论.分为4个基本功能: 商品浏览 会员功能 购物车 订单结账 其中 ...

  8. java 三大框架

    SSH即:Spring.Struts.HibernateSpring:功能强大的组件粘合济,能够将你的所有的java功能模块用配置文件的方式组合起来(还让你感觉不到spring的存在)成为一个完成的应 ...

  9. UWP: 实现 UWP 应用自启动

    在上一篇文章中,我们实现了使用命令行来启动 UWP 应用,在这一篇文章中,我们会实现 UWP 应用自启用的实现,也即开机后或用户登陆后,应用自己启动.这些特性原来都是 Win32 程序所具备的,UWP ...

  10. linux_RAID

    什么是RAID? 磁盘阵列,把多个磁盘组合成一个磁盘组,在逻辑上看起来就是一块大的磁盘,提供单个物理磁盘的存储量和更高的存储性能,同时提供不同级别的冗余备份的一种技术,不同的RAID技术对应不同级别 ...