Padding

在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5。这样的好处有两点:

  • 在特征图(二维卷积)中就会存在一个中心像素点。有一个中心像素点会十分方便,便于指出过滤器的位置。

  • 在没有padding的情况下,经过卷积操作,输出的数据维度会减少。以二维卷积为例,输入大小 \(n\times n\),过滤器大小\(f\times f\),卷积后输出的大小为\((n-f+1)\times(n-f+1)\)。
  • 为了避免这种情况发生,可以采取padding操作,padding的长度为\(p​\),由于在二维情况下,上下左右都“添加”长度为\(p​\)的数据。构造新的输入大小为\((n+2p)\times(n+2p)​\) , 卷积后的输出变为\((n+2p-f+1)\times(n+2p-f+1)​\)。
  • 如果想使卷积操作不缩减数据的维度,那么\(p\)的大小应为\((f-1)/2\),其中\(f\)是过滤器的大小,该值如果为奇数,会在原始数据上对称padding,否则,就会出现向上padding 1个,向下padding 2个,向左padding 1个,向右padding 2个的情况,破坏原始数据结构。

Stride

卷积中的步长大小为\(s\),指过滤器在输入数据上,水平/竖直方向上每次移动的步长,在Padding 公式的基础上,最终卷积输出的维度大小为:

\[\left \lfloor \frac{n+2p-f}{s}+1 \right \rfloor \times \left \lfloor \frac{n+2p-f}{s}+1 \right \rfloor\]

\(\left \lfloor \right\rfloor\)符号指向下取整,在python 中为floor地板除操作。

Channel

通道,通常指数据的最后一个维度(三维),在计算机视觉中,RGB代表着3个通道(channel)。

  • 举例说明:现在有一张图片的大小为\(6\times 6\times 3\),过滤器的大小为\(3\times 3\times n_c\), 这里\(n_c\)指过滤器的channel大小,该数值必须与输入的channel大小相同,即\(n_c=3\)。
  • 如果有\(k\)个\(3\times 3\times n_c\)的过滤器,那么卷积后的输出维度为\(4\times 4\times k\)。注意此时\(p=0, s=1\),\(k\)表示输出数据的channel大小。一般情况下,\(k\)代表\(k\)个过滤器提取的k个特征,如\(k=128\),代表128个\(3\times 3\)大小的过滤器,提取了128个特征,且卷积后的输出维度为\(4\times 4\times 128\)。

在多层卷积网络中,以计算机视觉为例,通常情况下,图像的长和宽会逐渐缩小,channel数量会逐渐增加。

Pooling

  • 除了卷积层,卷积网络使用池化层来缩减数据的大小,提高计算的速度 ,同时提高所提取特征的鲁棒性。 池化操作不需要对参数进行学习,只是神经网络中的静态属性。
  • 池化层中,数据的维度变化与卷积操作类似。池化后的channel数量与输入的channel数量相同,因为在每个channel上单独执行最大池化操作。
  • f=2, s=2,相当于对数据维度的减半操作,f指池化层过滤器大小,s指池化步长。

卷积神经网络示例

一个用于手写数字识别的CNN结构如下图所示:

该网络应用了两层卷积,并且在第二个池化层之后又接了几个全连接层,这样做的目的是避免某一层的激活值数量减少的太快,具体原因后文解释。

具体参数数量可视化如下所示:

从图中可以发现,卷积层的参数数量较小,大部分参数集中在全连接层。而且随着网络层的加深,激活值数量逐渐减少,如果激活值数量下降太快,会影响网络的性能。因此需要构建多个全连接层,而不是一个全连接层一步到位。

卷积层的好处

与只用全连接层相比,卷积层的主要优点是参数共享稀疏连接,这使得卷积操作所需要学习的参数数量大大减少。

吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(一)的更多相关文章

  1. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  2. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)

    作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十 ...

  3. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(二)

    经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络.网络深度逐渐增加,训练的参数数量也骤增.AlexNet大约6000万参数,VGG大约上亿参数. 从中我们可 ...

  4. 吴恩达深度学习笔记(deeplearning.ai)之循环神经网络(RNN)(三)

    1. 导读 本节内容介绍普通RNN的弊端,从而引入各种变体RNN,主要讲述GRU与LSTM的工作原理. 事先声明,本人采用ng在课堂上所使用的符号系统,与某些学术文献上的命名有所不同,不过核心思想都是 ...

  5. 吴恩达深度学习笔记(八) —— ResNets残差网络

    (很好的博客:残差网络ResNet笔记) 主要内容: 一.深层神经网络的优点和缺陷 二.残差网络的引入 三.残差网络的可行性 四.identity block 和 convolutional bloc ...

  6. 吴恩达深度学习笔记(十二)—— Batch Normalization

        主要内容: 一.Normalizing activations in a network 二.Fitting Batch Norm in a neural network 三.Why does ...

  7. 吴恩达深度学习笔记(七) —— Batch Normalization

    主要内容: 一.Batch Norm简介 二.归一化网络的激活函数 三.Batch Norm拟合进神经网络 四.测试时的Batch Norm 一.Batch Norm简介 1.在机器学习中,我们一般会 ...

  8. 吴恩达深度学习笔记1-神经网络的编程基础(Basics of Neural Network programming)

    一:二分类(Binary Classification) 逻辑回归是一个用于二分类(binary classification)的算法.在二分类问题中,我们的目标就是习得一个分类器,它以对象的特征向量 ...

  9. 吴恩达深度学习笔记(十一)—— dropout正则化

    主要内容: 一.dropout正则化的思想 二.dropout算法流程 三.dropout的优缺点 一.dropout正则化的思想 在神经网络中,dropout是一种“玄学”的正则化方法,以减少过拟合 ...

随机推荐

  1. [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式 (hash构造后缀数组,二分答案)

    以后似乎终于不用去学后缀数组的倍增搞法||DC3等blablaSXBK的方法了= = 定义(来自关于后缀数组的那篇国家集训队论文..) 后缀数组:后缀数组SA是一个一维数组,它保存1..n的某个排列S ...

  2. CodeForces-2015 HIAST Collegiate Programming Contest-Gym-100952A.水题 100952B.水题 100952C.回文字符串 100952D.杨辉三角处理组合数 其他题目待续。。。

    哈哈哈哈哈哈哈,最近一直在补题,改各种错误的代码,wa了20多遍,改到心态爆炸,改好之后,感觉世界都美好了(叉会腰~)... A. Who is the winner? time limit per ...

  3. HDU2504-又见GCD-递归

    又见GCD Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  4. RegExp对象的三个方法

      RegExp 对象有 3 个方法:test().exec() 以及 compile().   test( ) test()方法检索字符串中的指定值.返回值是true或false. 例子: 因为字符 ...

  5. nodejs学习笔记 —— 异步编程解决方案

    在js或者node编程中,由于异步的频繁和广度使用,使得回调和嵌套的深度导致编程的体验遇到一些挑战,如果写出优雅和好看的代码,本文主要针对异步编程的主流方案做一些总结 1.事件发布/订阅模式 事件监听 ...

  6. spring boot项目编译出来的jar包如何更改端口号

    执行的时候更改端口即可 . java -Dserver.port=9999 -jar boot.jar

  7. 基础 - 32位操作系统最多只支持4G内存。

    32位操作系统最多只支持4G内存. CPU能不能直接访问硬盘的数据呢, 不能. 只能通过把硬盘的数据先放到内存里, 然后再从内存里访问硬盘的数据.我们平时玩游戏碰上读图loading 进度条的这个过程 ...

  8. [原创]自动获取当前URL所属主域的JS方法(适合多级域名)

    工作中要用到,就随手写了个,不是什么难题,分享给有需要的朋友(主要是很久没更新博客了). 如果有特殊域名,比如“.tj.cn",请将".tj"加到hostExts数组中( ...

  9. Oracle多表连接查询

    连接:将一张表中的行按照某种条件和另一张表中的行连接起来形成一个新行的的过程. 根据连接查询返回的结果,分为3类: 内连接(inner join) 外连接(outer join) 交叉连接(cross ...

  10. CentOS6.x机器安装Azure CLI2.0【2】

    安装Azure CLI 2.0的前提是:机器中必须有 Python 2.7.x 或 Python 3.x.如果机器中没有其中任何一个Python版本,请及时安装 1.准备一台CentOS 6.9的机器 ...