一个被放弃的入门级的例子终于被我实现了,虽然还不太完美,但还是想记录下

1.预处理

  相比较从库里下载数据集(关键是经常失败,格式也看不懂),更喜欢直接拿图片,从网上找了半天,最后从CSDN上下载了一个,真的是良心啊,都分好类了,有需要的可以找我

  (1)图片大小,灰度,格式处理:虽然这里用不到,以后可能用到,所以还是写了

  (2)图片打标:个人想法,图片名称含有标签,训练检测的时候方便拿

代码

 from PIL import Image
import glob
import os def load_image():
"""
图片预处理
将图片大小强制处理为28x28
转换为png格式
"""
width = length = 28
train_path = 'D:/AI/MR_AIStudy/MNIST/dataset/train/*'
test_path = 'D:/AI/MR_AIStudy/MNIST/dataset/test/*'
img_path = glob.glob(test_path) # 图片读取路径
try:
for file in img_path:
path, ext = os.path.splitext(file)
# print(path, ext)
img = Image.open(file)
# out = img.resize((width, length), Image.ANTIALIAS)
out = img.convert('L')
file_name = '{}{}'.format(path, '.png')
print(file_name)
out.save(file_name, quality=100)
print('success')
# img = Image.open(file)
# out = img.resize((width, length), Image.ANTIALIAS)
# out = out.convert('L')
# file_name = '{}{}'.format(path, ext)
# out.save(file_name, quality=100)
except Exception as e:
print(e)
# 图片预处理,将图片缩放到30px30px
# img_path = glob.glob('D:/AI/MR_AIStudy/opencv4/images/*.png') # 图片读取路径
# for file in img_path:
# name = os.path.join(path_save, file)
# im = Image.open(file)
# im.thumbnail((30, 30))
# print(im.size)
# im.save(name, 'png')
# img = Image.open(file)
# data = img.getdata()
# data = np.matrix(data)
# data = np.reshape(data, (30, 30))
# print(data.size) def rename():
# 修改文件名称为 序号-标签.bmp (123-2.bmp) 另存到D:/AI/MR_AIStudy/MNIST/dataset/train目录下
for label in range(10):
print(label)
# path = 'D:/AI/MR_AIStudy/MNIST/dataset/trainimage/{}/*.bmp'.format(label)
path = 'D:/AI/MR_AIStudy/MNIST/dataset/testimage/{}/*.bmp'.format(label)
# path_save = 'D:/AI/MR_AIStudy/MNIST/dataset/train'
path_save = 'D:/AI/MR_AIStudy/MNIST/dataset/test'
print('path', path)
img_path = glob.glob(path)
try:
for index, file in enumerate(img_path):
# index用来区分相同标签不同图片
path, ext = os.path.splitext(file)
# print(path, ext)
img = Image.open(file)
out = img.convert('L')
file_name = '{}-{}{}'.format(index, label, ext) # 修改文件名称,将其打标
print(file_name)
# out.save(file_name, quality=100)
out.save(os.path.join(path_save, os.path.basename(file_name))) # 文件存到指定路径
# break
# print('success') except Exception as e:
print(e)
# break if __name__ == '__main__':
load_image()
# change_ext()
# rename()

2.卷积神经网络

  本来是有归一化,softmax,独热方法的,但是我加上后不好使(加上softmax后不收敛了),就手动实现了一下归一化和独热

代码

import torch
import torch.nn as nn
import torch.utils.data as Data
import glob
import os
import numpy as np
from PIL import Image
import datetime
from torchvision import transforms
import torch.nn.functional as F
# 6272=8x32x32 EPOCH = 1
BATCH_SIZE = 50 class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.con1 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.MaxPool2d(kernel_size=2),
nn.ReLU(),
)
self.con2 = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.MaxPool2d(kernel_size=2),
nn.ReLU(),
)
self.fc = nn.Sequential(
# 线性分类器
nn.Linear(128*7*7, 128), # 修改图片大小后要重新计算
nn.ReLU(),
nn.Linear(128, 10),
# nn.Softmax(dim=1),
)
self.mls = nn.MSELoss()
self.opt = torch.optim.Adam(params=self.parameters(), lr=1e-3)
self.start = datetime.datetime.now() def forward(self, inputs):
out = self.con1(inputs)
out = self.con2(out)
out = out.view(out.size(0), -1) # 展开成一维
out = self.fc(out)
# out = F.log_softmax(out, dim=1)
return out def train(self, x, y):
out = self.forward(x)
loss = self.mls(out, y)
print('loss: ', loss)
self.opt.zero_grad()
loss.backward()
self.opt.step() def test(self, x):
out = self.forward(x)
return out class ParseImage(object):
def __init__(self):
self.transform1 = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0] 归一化
]
) def get_data(self, path):
# load_image()
# 将图片转为矩阵,标签进行独热编码
x_data = []
y_data = []
img_path = glob.glob(path) # 图片读取路径
for file in img_path:
one_hot = []
img = Image.open(file)
# img = self.transform1(img)
# img = transforms.ToPILImage()(img)
data = img.getdata()
data = np.matrix(data)
data = np.reshape(data, (28, 28))
# ..手动归一化
data = data/255
x_data.append(data)
name, ext = os.path.splitext(file)
label = name.split('-')[1]
print('label', label)
for i in range(10):
if str(i) == label:
one_hot.append(1)
else:
one_hot.append(0)
y_data.append(one_hot)
# 先转为数组,在转为tensor
x_data = np.array(x_data)
y_data = np.array(y_data)
x_data = torch.from_numpy(x_data).float()
# 输入数据增加频道维度
x_data = torch.unsqueeze(x_data, 1)
y_data = torch.from_numpy(y_data).float()
return x_data, y_data if __name__ == '__main__':
data = ParseImage()
train_path = 'D:/AI/MR_AIStudy/MNIST/dataset/train/*.png'
test_path = 'D:/AI/MR_AIStudy/MNIST/dataset/test/*.png'
x_data, y_data = data.get_data(train_path)
net = MyNet()
# 批训练
torch_dataset = Data.TensorDataset(x_data, y_data)
loader = Data.DataLoader(
dataset=torch_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=2,
)
for epoch in range(EPOCH):
for step, (batch_x, batch_y) in enumerate(loader):
print(step)
net.train(batch_x, batch_y) torch.save(net, 'net.pkl') # 存储模型, 全部存储 # 只测试的话加载模型即可
model = torch.load('net.pkl') # 恢复模型
net = model test_x, test_y = data.get_data(test_path)
predict = net.test(test_x)
print(predict)
end = datetime.datetime.now()
print('耗时:{}s'.format(end-net.start))
# 预测结果
# tensor([[ 9.1531e-01, -2.5804e-02, 1.2001e-02, 8.3876e-03, -1.6330e-02,
# -1.7501e-03, -1.0589e-02, 2.6951e-02, 2.1836e-02, -4.5546e-02],
# [-6.4733e-02, 7.7697e-01, 2.2536e-02, 8.3758e-03, 4.2895e-02,
# 1.1602e-02, -3.0644e-02, 2.2412e-02, 1.1579e-01, 3.2196e-02],
# [ 2.6631e-02, -5.3223e-02, 7.9808e-01, 6.0601e-03, 2.2453e-02,
# -3.9522e-02, 3.4775e-02, 1.5853e-02, -6.9575e-03, 1.7208e-02],
# [-1.3861e-02, -1.8332e-02, 4.9981e-02, 9.6510e-01, -1.5838e-02,
# 9.0347e-03, 1.9342e-02, -3.8044e-02, -5.7994e-03, 1.4480e-02],
# [-2.0864e-03, -5.9021e-02, 6.5524e-02, -2.1486e-02, 1.0074e+00,
# 9.3356e-03, 1.0758e-02, 6.6142e-02, 1.4841e-02, 2.2529e-03],
# [-8.4950e-02, -2.4841e-02, -7.7684e-02, 1.6404e-01, 4.3458e-02,
# 8.6580e-01, -3.5630e-02, 4.2452e-02, 7.0675e-02, 2.9663e-02],
# [-5.4024e-02, -1.7111e-02, -3.7085e-03, 3.8194e-03, -3.0645e-02,
# -4.4164e-02, 1.0109e+00, 4.4349e-03, 1.3218e-01, -2.2839e-02],
# [-2.0932e-02, 6.4831e-03, -1.3301e-02, 2.8091e-02, -3.0815e-02,
# -3.2140e-02, 5.2251e-03, 1.0215e+00, 3.2592e-02, 1.0505e-02],
# [ 1.5922e-02, -3.9700e-02, 2.4425e-02, -1.7313e-04, -1.5997e-02,
# -5.2336e-02, -7.7526e-04, -2.1901e-02, 9.7167e-01, 1.3339e-01],
# [-1.9283e-02, 2.4373e-02, -7.5621e-02, 1.1338e-01, -5.7805e-02,
# -5.2936e-03, 1.0090e-03, 2.2471e-02, -3.5736e-02, 1.1243e+00]],
# grad_fn=<AddmmBackward>)
# 耗时:0:09:59.665343s

预测结果不是很美观,但是正确的  欧耶!

pytorch CNN 手写数字识别的更多相关文章

  1. 用pytorch做手写数字识别,识别l率达97.8%

    pytorch做手写数字识别 效果如下: 工程目录如下 第一步  数据获取 下载MNIST库,这个库在网上,执行下面代码自动下载到当前data文件夹下 from torchvision.dataset ...

  2. CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  3. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  4. Keras cnn 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...

  5. kaggle 实战 (2): CNN 手写数字识别

    文章目录 Tensorflow 官方示例 CNN 提交结果 Tensorflow 官方示例 import tensorflow as tf mnist = tf.keras.datasets.mnis ...

  6. keras框架的CNN手写数字识别MNIST

    参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018. 首先在命令行中写入 activate tensorflow和jupyter notebo ...

  7. Pytorch入门——手把手教你MNIST手写数字识别

    MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...

  8. Task7.手写数字识别

    用PyTorch完成手写数字识别 import numpy as np import torch from torch import nn, optim import torch.nn.functio ...

  9. 深度学习之PyTorch实战(3)——实战手写数字识别

    上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字 ...

随机推荐

  1. Mike and strings CodeForces - 798B (又水又坑)

    题目链接 题意:英语很简单,自己取读吧. 思路: 既然n和i字符串的长度都很小,最大才50,那么就是只要能出答案就任意暴力瞎搞. 本人本着暴力瞎搞的初衷,写了又臭又长的200多行(代码框架占了50行) ...

  2. MySQL数据类型--日期和时间类型

    MySQL中的多种时间和格式数据类型 日期和时间类型是为了方便在数据库中存储日期和时间而设计的.MySQL中有多种表示日期和时间的数据类型. 其中,year类型表示时间,date类型表示日期,time ...

  3. Redis使用和部分源码剖析以及Django缓存和redis的关系

    0.特点: a.持久化 b.单进程.单线程 c.5大数据类型    d.用于操作内存的软件.    e.虽然是缓存数据库但是可以做持久化的工作 MySQL是一个软件,帮助开发者对一台机器的硬盘进行操作 ...

  4. SOAP UI-----测webservice接口

    webservice的请求报文和返回报文都是xml格式的. 使用soapui.storm对webservice接口进行测试,postman无法测. http://www.webxml.com.cn/W ...

  5. HDU 3947 Assign the task

    http://acm.hdu.edu.cn/showproblem.php?pid=3974 Problem Description There is a company that has N emp ...

  6. Tomcat集成Memcached Session Manager方案

    http://repo1.maven.org/maven2/de/javakaffee/msm/memcached-session-manager/2.3.2/memcached-session-ma ...

  7. pl/sql实现打印九九乘法表

    学习PL/SQL循环的时候写的,记录一下. declare v_number1 ); -- 外层循环变量 v_number2 ); -- 内层循环变量 begin .. -- 开始外层循环 loop ...

  8. Azure系列2.1.10 —— CloudBlobClient

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  9. Mybatis+Spring整合后Mapper测试类编写

    public class UserMapperTest { private ApplicationContext applicationContext; @Before public void ini ...

  10. Eclipse中修改jsp、html……的编码格式

    一般如果使用的是Eclipse的默认编码格式,在我们保存的时候会提示选择保存的编码格式,保存后英文没有问题,但是中文就会乱码. 修改方式是: Windows——>Preferences——> ...