【BZOJ4316】小C的独立集(动态规划)

题面

BZOJ

题解

考虑树的独立集求法

设\(f[i][0/1]\)表示\(i\)这个点一定不选,以及\(i\)这个点无所谓的最大值

转移\(f[u][0]=\sum f[v][1]\),\(f[u][1]=\sum f[v][0]\),\(f[u][1]=max(f[u][1],f[u][0])\)

现在放在了仙人掌上,

我们可以看做一棵树加上了若干不相交的返祖边

于是再加上一维\(f[u][0/1][0/1]\)

其中最后一维表示这条边所在的环的最底端的那个点一定不选,或者无所谓

赋初值:\(f[u][1][1]=1\),如果这个点不是所在环的最底端,\(f[u][1][0]=1\)

此时的转移:

1.两个点的底端点相同

这个时候我们先只考虑强制不选底端的转移

那么,\(f[u][1][0]+=f[v][1][1],f[u][1][1]+=f[v][1][0]\)

也就是上面裸的在树上的转移

2.两个点的底端点不同

既然跨越了环,意味着\(u\)就是这个环的底端点,\(v\)是它所在环的顶端点

那么,可以\(u\)选\(v\)不选,因为跨越了环,所以对于\(v\)的底端点选择与否我们是不关心的

而第二维的\(1\)表示的\(u\)无所谓,后面的\(0\)则是强制不选择\(u\)

因此\(f[u][0][0]+=f[v][1][1]\),\(f[u][1][0]+=f[v][0][0]\)

3.\(v\)的顶端点不是\(u\)

意味着不用担心底端点产生的影响

所以\(f[u][0][1]+=f[v][1][1]\),\(f[u][1][1]+=f[v][0][1]\)

4.\(v\)的顶端点是\(u\)

此时要考虑底端点的贡献了

此时当前\(u\)不选,那就没有什么问题\(f[u][0][1]+=f[v][1][1]\)

当前\(u\)选择,强制不能选择底端点\(f[u][1][1]+=f[v][0][0]\)

好了,这样就讨论完了四种转移,然后就可以啦

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 55555
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX*3];
int h[MAX],cnt=1,n,m;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dep[MAX],fa[MAX];
int tp[MAX],un[MAX];
void dfs(int u,int ff)
{
fa[u]=ff;dep[u]=dep[ff]+1;
for(int i=h[u];i;i=e[i].next)
if(!dep[e[i].v])dfs(e[i].v,u);
}
void jump(int u,int v){int x=v;while(x!=u)tp[x]=u,un[x]=v,x=fa[x];}
int f0[MAX],f1[MAX],g0[MAX],g1[MAX];
void dp(int u)
{
f1[u]=1;
if(u!=un[u])g1[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(dep[u]+1!=dep[v])continue;
dp(v);
if(un[u]!=un[v])g0[u]+=f1[v],g1[u]+=g0[v];
else g0[u]+=g1[v],g1[u]+=g0[v];
if(tp[v]!=u)f0[u]+=f1[v],f1[u]+=f0[v];
else f0[u]+=f1[v],f1[u]+=g0[v];
}
f1[u]=max(f1[u],f0[u]);
g1[u]=max(g1[u],g0[u]);
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
dfs(1,0);
for(int u=1;u<=n;++u)
for(int i=h[u];i;i=e[i].next)
if(dep[u]<dep[e[i].v]&&fa[e[i].v]!=u)
jump(u,e[i].v);
dp(1);
printf("%d\n",f1[1]);
return 0;
}

【BZOJ4316】小C的独立集(动态规划)的更多相关文章

  1. bzoj4316: 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  2. [BZOJ4316]小C的独立集(圆方树DP)

    题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的 ...

  3. BZOJ4316 小C的独立集 【仙人掌】

    题目 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多. ...

  4. 2019.02.07 bzoj4316: 小C的独立集(仙人掌+树形dp)

    传送门 题意:给出一个仙人掌森林求其最大独立集. 思路:如果没有环可以用经典的树形dpdpdp解决. fi,0/1f_{i,0/1}fi,0/1​表示第iii个点不选/选的最大独立集. 然后fi,0+ ...

  5. 【题解】Bzoj4316小C的独立集

    决定要开始学习圆方树 & 仙人掌相关姿势.加油~~ 其实感觉仙人掌本质上还是一棵树,长得也还挺优美的.很多的想法都可以往树的方面上靠,再针对仙人掌的特性做出改进.这题首先如果是在树上的话那么实 ...

  6. [BZOJ4316]小C的独立集 仙人掌?

    题目链接 因为xls让我每周模拟一次,然后学习模拟中没有学过的东西.所以就来学圆方树. 本来这道题用不着圆方树,但是圆方树是看yyb的博客学的,他在里面讲一下作为一个引子,所以也来写一下. 首先来Ta ...

  7. bzoj4316小C的独立集(dfs树/仙人掌+DP)

    本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环( ...

  8. 【BZOJ4316】小C的独立集(仙人掌,动态规划)

    [BZOJ4316]小C的独立集(仙人掌,动态规划) 题面 BZOJ 题解 除了普通的动态规划以外,这题还可以用仙人掌的做法来做. 这里没有必要把圆方树给建立出来 \(Tarjan\)的本质其实就是一 ...

  9. 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 57  Solved: 41[Submit][Status][Discuss] ...

随机推荐

  1. 关于iframe页面里的重定向问题

    最近公司做的一个功能,使用了iframe,父页面内嵌子页面,里面的坑还挺多的,上次其实就遇到过,只不过今天在此描述一下. 请允许我画个草图: 外层大圈是父级页面,里层是子级页面,我们是在父级引用子级页 ...

  2. 从Mongo导出数据库到Excel

    在MongoDB的安装目录的bin文件夹下打开命令行: ./mongoexport -d kugou_db -c songs -f rank,singer,song,time --type=csv - ...

  3. linux下编译tex,bib成pdf文件

    参考linux下编译bib.tex生成pdf文件 为了编译出出正确的pdf文件,需要执行4条命令完成整个编译过程. 编译命令及输出 $ pdflatex bb.tex #目录下会生成bb.aux.bb ...

  4. vue+webpack项目打包后背景图片加载不出来问题解决

    在做VUE +的WebPack脚手架项目打包完成后,在IIS服务器上运行发现项目中的背景图片加载不出来检查项目代码发现是因为CSS文件中,背景图片引用的路径问题;后来通过修改配置文件,问题终于解决了, ...

  5. Java中Optional类的使用

    从 Java 8 引入的一个很有趣的特性是 Optional  类.Optional 类主要解决的问题是臭名昭著的空指针异常(NullPointerException) —— 每个 Java 程序员都 ...

  6. 老男孩python学习自修第十五天【常用模块之time】

    例如: #!/usr/bin/env python # _*_ coding:UTF-8 _*_ import time if __name__ == "__main__": pr ...

  7. 在Mac 系统上使用MAMP搭建PHP开发环境

    1.下载MAMP套件 下载地址为https://www.mamp.info/en/ 2.安装此.dmg文件 3.配置apache虚拟主机 (1)在/Applications/MAMP/conf/apa ...

  8. Java多线程之通过标识关闭线程

    package org.study2.javabase.ThreadsDemo.status; /** * @Auther:GongXingRui * @Date:2018/9/19 * @Descr ...

  9. pooling的几种形式(转)

    转载地址:http://blog.csdn.net/malefactor/article/details/51078135    原作者:张俊林 CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见 ...

  10. border-color的深入理解

    .className{ width:100px;height:100px; border:100px solid; border-color: red green blue orange; } 最终的 ...