题目传送门

题意:f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d,求f (n) % m。训练指南的题目

分析:令:.则

#include <bits/stdc++.h>

int d, n, m;
int a[16], f[16]; struct Mat {
int m[17][17];
int row, col;
Mat() {
//row = col = 16;
memset (m, 0, sizeof (m));
}
void init(int sz) {
row = col = sz;
for (int i=1; i<row; ++i) {
m[i][i+1] = 1;
}
int c = sz - 1;
for (int i=2; i<=col; ++i) {
m[sz][i] = a[c--];
}
}
void change(int sz) {
row = col = sz;
for (int i=1; i<=sz; ++i) {
m[i][i] = 1;
}
}
}; Mat operator * (const Mat &a, const Mat &b) {
Mat ret;
ret.row = a.row; ret.col = b.col;
for (int i=1; i<=a.row; ++i) {
for (int j=1; j<=b.col; ++j) {
for (int k=1; k<=a.col; ++k) {
int &r = ret.m[i][j];
r = (r + 1ll * a.m[i][k] * b.m[k][j]) % m;
}
}
}
return ret;
} Mat operator ^ (Mat x, int n) {
Mat ret; ret.change (d+1);
while (n) {
if (n & 1) {
ret = ret * x;
}
x = x * x; n >>= 1;
}
return ret;
} //Running_Time
int main() {
while (scanf ("%d%d%d", &d, &n, &m) == 3) {
if (!d && !n && !m) {
break;
}
for (int i=1; i<=d; ++i) {
scanf ("%d", a+i);
}
for (int i=1; i<=d; ++i) {
scanf ("%d", f+i);
}
if (n <= d) {
printf ("%d\n", f[n] % m);
} else {
Mat ans, Fd;
ans.init (d + 1);
ans = ans ^ (n - d); Fd.row = d + 1; Fd.col = 1;
for (int i=2; i<=d+1; ++i) {
Fd.m[i][1] = f[i-1];
} ans = ans * Fd;
printf ("%d\n", ans.m[d+1][1]);
}
} return 0;
}

  

矩阵快速幂 UVA 10870 Recurrences的更多相关文章

  1. UVa 10870 Recurrences (矩阵快速幂)

    题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...

  2. UVA - 10870 Recurrences 【矩阵快速幂】

    题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...

  3. UVA 10870 - Recurrences(矩阵高速功率)

    UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ...

  4. POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】

    典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...

  5. uva 10518 - How Many Calls?(矩阵快速幂)

    题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...

  6. Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)

    题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3);  求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...

  7. UVA - 11149 (矩阵快速幂+倍增法)

    第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...

  8. UVA10870—Recurrences(简单矩阵快速幂)

    题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ...

  9. UVA10870 Recurrences —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bit ...

随机推荐

  1. IOS - 唯一标识符的获得和更新

    苹果公司不可能让其他人获得个人终端的唯一标识符,所以一个终端给另一个终端发送消息,必须经过苹果的APNS(Apple Push Notification Service)....而且苹果为了防止苹果用 ...

  2. 如何查看设备的 UDID

    手机连接上电脑,打开 Xcode,确认手机已连上: command+shift+2,就可以查看到 UDID 了:

  3. Windows Form 中快捷键设置

    在Windows Form程序中使用带下划线的快捷键只需要进行设置: 就能够工作.

  4. 单击双击手势(UITapGestureRecognizer)

    - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view, typica ...

  5. 3dmax导出3ds具有过多要导出的面超过64k解决方法

    参考:http://blog.sina.com.cn/s/blog_7a71dd090100w3r0.html 修改器->网格编辑->ProOptimizer 选中对象, 原始模型 顶点数 ...

  6. MVC4方法行为过滤器例子(用户登录)

    在Model文件夹下添加一个类MyActionFilterAttribute继承于ActionFilterAttribute: using System; using System.Collectio ...

  7. XMPP框架下微信项目总结(3)获取点子名片信息(个人资料)更新电子名片

    思路:1 调用方法,添加点子名片模块(名片信息含电话,头像,单位个人信息)等 开启ps:APP发送请求到服务器openfire,服务器返回个人信息,app存储到数据库,app界面需要数据通过数据库获取 ...

  8. Mac系统下使用VirtualBox虚拟机安装win7--第四步 安装虚拟机硬件扩展包支持

    如 果想要在虚拟机上使用连接在 Mac 上的硬件外设,比如 U 盘,iPhone 等,需要我们在 Virtual Box 官网下载一个硬件支持扩展安装包.同样地,我们先打开虚拟机的下载页面: http ...

  9. mysql的存储过程

    mysql5中开始引入存储过程,存储过程是一组为了完成特定功能的sql语句集,经编译后存储在数据库中. 存储过程的特点(优点): 1:减小网络通信量.调用一个行数不多的存储过程与直接高用SQL语名的网 ...

  10. 算法系列:HMM

    隐马尔可夫(HMM)好讲,简单易懂不好讲. 用最经典的例子,掷骰子.假设我手里有三个不同的骰子.第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1 ...