题目传送门

题意:f(n) = a1f(n − 1) + a2f(n − 2) + a3f(n − 3) + . . . + adf(n − d), for n > d,求f (n) % m。训练指南的题目

分析:令:.则

#include <bits/stdc++.h>

int d, n, m;
int a[16], f[16]; struct Mat {
int m[17][17];
int row, col;
Mat() {
//row = col = 16;
memset (m, 0, sizeof (m));
}
void init(int sz) {
row = col = sz;
for (int i=1; i<row; ++i) {
m[i][i+1] = 1;
}
int c = sz - 1;
for (int i=2; i<=col; ++i) {
m[sz][i] = a[c--];
}
}
void change(int sz) {
row = col = sz;
for (int i=1; i<=sz; ++i) {
m[i][i] = 1;
}
}
}; Mat operator * (const Mat &a, const Mat &b) {
Mat ret;
ret.row = a.row; ret.col = b.col;
for (int i=1; i<=a.row; ++i) {
for (int j=1; j<=b.col; ++j) {
for (int k=1; k<=a.col; ++k) {
int &r = ret.m[i][j];
r = (r + 1ll * a.m[i][k] * b.m[k][j]) % m;
}
}
}
return ret;
} Mat operator ^ (Mat x, int n) {
Mat ret; ret.change (d+1);
while (n) {
if (n & 1) {
ret = ret * x;
}
x = x * x; n >>= 1;
}
return ret;
} //Running_Time
int main() {
while (scanf ("%d%d%d", &d, &n, &m) == 3) {
if (!d && !n && !m) {
break;
}
for (int i=1; i<=d; ++i) {
scanf ("%d", a+i);
}
for (int i=1; i<=d; ++i) {
scanf ("%d", f+i);
}
if (n <= d) {
printf ("%d\n", f[n] % m);
} else {
Mat ans, Fd;
ans.init (d + 1);
ans = ans ^ (n - d); Fd.row = d + 1; Fd.col = 1;
for (int i=2; i<=d+1; ++i) {
Fd.m[i][1] = f[i-1];
} ans = ans * Fd;
printf ("%d\n", ans.m[d+1][1]);
}
} return 0;
}

  

矩阵快速幂 UVA 10870 Recurrences的更多相关文章

  1. UVa 10870 Recurrences (矩阵快速幂)

    题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...

  2. UVA - 10870 Recurrences 【矩阵快速幂】

    题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...

  3. UVA 10870 - Recurrences(矩阵高速功率)

    UVA 10870 - Recurrences 题目链接 题意:f(n) = a1 f(n - 1) + a2 f(n - 2) + a3 f(n - 3) + ... + ad f(n - d), ...

  4. POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】

    典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...

  5. uva 10518 - How Many Calls?(矩阵快速幂)

    题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...

  6. Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)

    题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3);  求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...

  7. UVA - 11149 (矩阵快速幂+倍增法)

    第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...

  8. UVA10870—Recurrences(简单矩阵快速幂)

    题目链接:https://vjudge.net/problem/UVA-10870 题目意思: 给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第 ...

  9. UVA10870 Recurrences —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-10870 题意: 典型的矩阵快速幂的运用.比一般的斐波那契数推导式多了几项而已. 代码如下: #include <bit ...

随机推荐

  1. 瀑布流图片自动式 masonry

    <script type="text/javascript" src="<?php echo FRONT_PUBLIC;?>js/jquery-1.8. ...

  2. 一个简单的代码计算行数demo编写

    最近手头的项目基本上已经完结,历经了5个月的开发和迭代,各种的需求调整,想对自己的代码量进行一个客观的计算,于是抽了点时间写下了这个小demo,朋友们有需要的可以看看,很简单. 基本的思想就是:根目录 ...

  3. Mysql复制之路由

    在主从复制读写分离的思路下,要想使所有写都到MasterServer,所有读都路由到Slave Server;就需要使用一些路由策略. 可以使用MysqlProxy[Mysql代理],据说MysqlP ...

  4. android中点击空白处隐藏软键盘

    InputMethodManager manager manager = (InputMethodManager) getSystemService(Context.INPUT_METHOD_SERV ...

  5. js对象的创建与原型总结

    //1 新建对象 var box = new Object(); box.name = "lee"; box.age = 100; box.run = function(){ re ...

  6. DOM – (w3school)1.DOM 方法 + 2.DOM属性 + 3.DOM 元素

      1.DOM 方法   一些 DOM 对象方法 这里提供一些您将在本教程中学到的常用方法: 方法 描述 getElementById() 返回带有指定 ID 的元素. getElementsByTa ...

  7. CNN初步-1

    Convolution:   个特征,则这时候把输入层的所有点都与隐含层节点连接,则需要学习10^6个参数,这样的话在使用BP算法时速度就明显慢了很多. 所以后面就发展到了局部连接网络,也就是说每个隐 ...

  8. CSS3学习

    1.CSS3边框 border-radius:创建圆角边框 border-radius:25px; -moz-border-radius:25px; /* 老的 Firefox */ box-shad ...

  9. 攻城狮在路上(叁)Linux(二十二)--- linux磁盘挂载与卸载 mount umount

    挂载就是将文件系统与目录结合的操作.挂载点就是目录,该目录就是进入分区或文件系统的入口. 一.挂载前的注意事项: 1.单一文件系统不应该被重复挂载在不同的挂载点中. 2.单一目录不应该重复挂载多个文件 ...

  10. CentOS-6.5安装配置Tengine

    一.安装pcre: cd /usr/local/src wget http://downloads.sourceforge.net/project/pcre/pcre/8.34/pcre-8.34.t ...