Spark之键值RDD转换(转载)
(例1):对每个的的年龄加2
object MapValues {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("map")
val sc = new SparkContext(conf)
val list = List(("mobin",22),("kpop",20),("lufei",23))
val rdd = sc.parallelize(list)
val mapValuesRDD = rdd.mapValues(_+2)
mapValuesRDD.foreach(println)
}
}
输出:
(mobin,24)
(kpop,22)
(lufei,25)
(RDD依赖图:红色块表示一个RDD区,黑色块表示该分区集合,下同)
2.flatMapValues(fun):对[K,V]型数据中的V值flatmap操作
(例2):
//省略<br>val list = List(("mobin",22),("kpop",20),("lufei",23))
val rdd = sc.parallelize(list)
val mapValuesRDD = rdd.flatMapValues(x => Seq(x,"male"))
mapValuesRDD.foreach(println)
输出:
(mobin,22)
(mobin,male)
(kpop,20)
(kpop,male)
(lufei,23)
(lufei,male)
如果是mapValues会输出:
(mobin,List(22, male))
(kpop,List(20, male))
(lufei,List(23, male))
(RDD依赖图)
3.comineByKey(createCombiner,mergeValue,mergeCombiners,partitioner,mapSideCombine)
comineByKey(createCombiner,mergeValue,mergeCombiners,numPartitions)
comineByKey(createCombiner,mergeValue,mergeCombiners)
createCombiner:在第一次遇到Key时创建组合器函数,将RDD数据集中的V类型值转换C类型值(V => C),
如例3:
mergeValue:合并值函数,再次遇到相同的Key时,将createCombiner道理的C类型值与这次传入的V类型值合并成一个C类型值(C,V)=>C,
如例3:
mergeCombiners:合并组合器函数,将C类型值两两合并成一个C类型值
如例3:
partitioner:使用已有的或自定义的分区函数,默认是HashPartitioner
mapSideCombine:是否在map端进行Combine操作,默认为true
注意前三个函数的参数类型要对应;第一次遇到Key时调用createCombiner,再次遇到相同的Key时调用mergeValue合并值
(例3):统计男性和女生的个数,并以(性别,(名字,名字....),个数)的形式输出
object CombineByKey {
def main(args: Array[String]) {
val conf = new SparkConf().setMaster("local").setAppName("combinByKey")
val sc = new SparkContext(conf)
val people = List(("male", "Mobin"), ("male", "Kpop"), ("female", "Lucy"), ("male", "Lufei"), ("female", "Amy"))
val rdd = sc.parallelize(people)
val combinByKeyRDD = rdd.combineByKey(
(x: String) => (List(x), 1),
(peo: (List[String], Int), x : String) => (x :: peo._1, peo._2 + 1),
(sex1: (List[String], Int), sex2: (List[String], Int)) => (sex1._1 ::: sex2._1, sex1._2 + sex2._2))
combinByKeyRDD.foreach(println)
sc.stop()
}
}
输出:
(male,(List(Lufei, Kpop, Mobin),3))
(female,(List(Amy, Lucy),2))
过程分解:
Partition1:
K="male" --> ("male","Mobin") --> createCombiner("Mobin") => peo1 = ( List("Mobin") , 1 )
K="male" --> ("male","Kpop") --> mergeValue(peo1,"Kpop") => peo2 = ( "Kpop" :: peo1_1 , 1 + 1 ) //Key相同调用mergeValue函数对值进行合并
K="female" --> ("female","Lucy") --> createCombiner("Lucy") => peo3 = ( List("Lucy") , 1 )
Partition2:
K="male" --> ("male","Lufei") --> createCombiner("Lufei") => peo4 = ( List("Lufei") , 1 )
K="female" --> ("female","Amy") --> createCombiner("Amy") => peo5 = ( List("Amy") , 1 )
Merger Partition:
K="male" --> mergeCombiners(peo2,peo4) => (List(Lufei,Kpop,Mobin))
K="female" --> mergeCombiners(peo3,peo5) => (List(Amy,Lucy))
(RDD依赖图)
4.foldByKey(zeroValue)(func)
foldByKey(zeroValue,partitioner)(func)
foldByKey(zeroValue,numPartitiones)(func)
foldByKey函数是通过调用CombineByKey函数实现的
zeroVale:对V进行初始化,实际上是通过CombineByKey的createCombiner实现的 V => (zeroValue,V),再通过func函数映射成新的值,即func(zeroValue,V),如例4可看作对每个V先进行 V=> 2 + V
func: Value将通过func函数按Key值进行合并(实际上是通过CombineByKey的mergeValue,mergeCombiners函数实现的,只不过在这里,这两个函数是相同的)
例4:
//省略
val people = List(("Mobin", 2), ("Mobin", 1), ("Lucy", 2), ("Amy", 1), ("Lucy", 3))
val rdd = sc.parallelize(people)
val foldByKeyRDD = rdd.foldByKey(2)(_+_)
foldByKeyRDD.foreach(println)
输出:
(Amy,2)
(Mobin,4)
(Lucy,6)
先对每个V都加2,再对相同Key的value值相加。
5.reduceByKey(func,numPartitions):按Key进行分组,使用给定的func函数聚合value值, numPartitions设置分区数,提高作业并行度
例5
//省略
val arr = List(("A",3),("A",2),("B",1),("B",3))
val rdd = sc.parallelize(arr)
val reduceByKeyRDD = rdd.reduceByKey(_ +_)
reduceByKeyRDD.foreach(println)
sc.stop
输出:
(A,5)
(A,4)
(RDD依赖图)
6.groupByKey(numPartitions):按Key进行分组,返回[K,Iterable[V]],numPartitions设置分区数,提高作业并行度
例6:
//省略
val arr = List(("A",1),("B",2),("A",2),("B",3))
val rdd = sc.parallelize(arr)
val groupByKeyRDD = rdd.groupByKey()
groupByKeyRDD.foreach(println)
sc.stop
输出:
(B,CompactBuffer(2, 3))
(A,CompactBuffer(1, 2))
以上foldByKey,reduceByKey,groupByKey函数最终都是通过调用combineByKey函数实现的
7.sortByKey(accending,numPartitions):返回以Key排序的(K,V)键值对组成的RDD,accending为true时表示升序,为false时表示降序,numPartitions设置分区数,提高作业并行度
例7:
//省略sc
val arr = List(("A",1),("B",2),("A",2),("B",3))
val rdd = sc.parallelize(arr)
val sortByKeyRDD = rdd.sortByKey()
sortByKeyRDD.foreach(println)
sc.stop
输出:
(A,1)
(A,2)
(B,2)
(B,3)
8.cogroup(otherDataSet,numPartitions):对两个RDD(如:(K,V)和(K,W))相同Key的元素先分别做聚合,最后返回(K,Iterator<V>,Iterator<W>)形式的RDD,numPartitions设置分区数,提高作业并行度
例8:
//省略
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
val rdd1 = sc.parallelize(arr, 3)
val rdd2 = sc.parallelize(arr1, 3)
val groupByKeyRDD = rdd1.cogroup(rdd2)
groupByKeyRDD.foreach(println)
sc.stop
输出:
(B,(CompactBuffer(2, 3),CompactBuffer(B1, B2)))
(A,(CompactBuffer(1, 2),CompactBuffer(A1, A2)))
(RDD依赖图)
9.join(otherDataSet,numPartitions):对两个RDD先进行cogroup操作形成新的RDD,再对每个Key下的元素进行笛卡尔积,numPartitions设置分区数,提高作业并行度
例9
//省略
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
val rdd = sc.parallelize(arr, 3)
val rdd1 = sc.parallelize(arr1, 3)
val groupByKeyRDD = rdd.join(rdd1)
groupByKeyRDD.foreach(println)
输出:
(B,(2,B1))
(B,(2,B2))
(B,(3,B1))
(B,(3,B2))
(A,(1,A1))
(A,(1,A2))
(A,(2,A1))
(A,(2,A2)
(RDD依赖图)
10.LeftOutJoin(otherDataSet,numPartitions):左外连接,包含左RDD的所有数据,如果右边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度
例10:
//省略
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3),("C",1))
val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"))
val rdd = sc.parallelize(arr, 3)
val rdd1 = sc.parallelize(arr1, 3)
val leftOutJoinRDD = rdd.leftOuterJoin(rdd1)
leftOutJoinRDD .foreach(println)
sc.stop
输出:
(B,(2,Some(B1)))
(B,(2,Some(B2)))
(B,(3,Some(B1)))
(B,(3,Some(B2)))
(C,(1,None))
(A,(1,Some(A1)))
(A,(1,Some(A2)))
(A,(2,Some(A1)))
(A,(2,Some(A2)))
11.RightOutJoin(otherDataSet, numPartitions):右外连接,包含右RDD的所有数据,如果左边没有与之匹配的用None表示,numPartitions设置分区数,提高作业并行度
例11:
//省略
val arr = List(("A", 1), ("B", 2), ("A", 2), ("B", 3))
val arr1 = List(("A", "A1"), ("B", "B1"), ("A", "A2"), ("B", "B2"),("C","C1"))
val rdd = sc.parallelize(arr, 3)
val rdd1 = sc.parallelize(arr1, 3)
val rightOutJoinRDD = rdd.rightOuterJoin(rdd1)
rightOutJoinRDD.foreach(println)
sc.stop
输出:
(B,(Some(2),B1))
(B,(Some(2),B2))
(B,(Some(3),B1))
(B,(Some(3),B2))
(C,(None,C1))
(A,(Some(1),A1))
(A,(Some(1),A2))
(A,(Some(2),A1))
(A,(Some(2),A2))
- 顶
- 0
- 踩
Spark之键值RDD转换(转载)的更多相关文章
- Spark常用函数讲解之键值RDD转换
摘要: RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集RDD有两种操作算子: Trans ...
- Learning Spark 第四章——键值对处理
本章主要介绍Spark如何处理键值对.K-V RDDs通常用于聚集操作,使用相同的key聚集或者对不同的RDD进行聚集.部分情况下,需要将spark中的数据记录转换为键值对然后进行聚集处理.我们也会对 ...
- Learning Spark中文版--第四章--使用键值对(1)
本章介绍了如何使用键值对RDD,Spark中很多操作都基于此数据类型.键值对RDD通常在聚合操作中使用,而且我们经常做一些初始的ETL(extract(提取),transform(转换)和load ...
- Spark笔记:复杂RDD的API的理解(上)
本篇接着讲解RDD的API,讲解那些不是很容易理解的API,同时本篇文章还将展示如何将外部的函数引入到RDD的API里使用,最后通过对RDD的API深入学习,我们还讲讲一些和RDD开发相关的scala ...
- Spark 键值对RDD操作
键值对的RDD操作与基本RDD操作一样,只是操作的元素由基本类型改为二元组. 概述 键值对RDD是Spark操作中最常用的RDD,它是很多程序的构成要素,因为他们提供了并行操作各个键或跨界点重新进行数 ...
- Spark学习之键值对(pair RDD)操作(3)
Spark学习之键值对(pair RDD)操作(3) 1. 我们通常从一个RDD中提取某些字段(如代表事件时间.用户ID或者其他标识符的字段),并使用这些字段为pair RDD操作中的键. 2. 创建 ...
- Spark大数据处理 之 RDD粗粒度转换的威力
在从WordCount看Spark大数据处理的核心机制(2)中我们看到Spark为了支持迭代和交互式数据挖掘,而明确提出了内存中可重用的数据集RDD.RDD的只读特性,再加上粗粒度转换操作形成的Lin ...
- Spark中的键值对操作-scala
1.PairRDD介绍 Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,Pa ...
- Spark学习笔记——键值对操作
键值对 RDD是 Spark 中许多操作所需要的常见数据类型 键值对 RDD 通常用来进行聚合计算.我们一般要先通过一些初始 ETL(抽取.转化.装载)操作来将数据转化为键值对形式. Spark 为包 ...
随机推荐
- spring的显示装配bean(1)------通过XML文件装配
1:spring环境的简单搭建 (1)导入spring相关的jar包. 2:准备要进行装配的Java类 这里给出两个举例类 (1) (2) 3:配置XML文件 (1)在配置文件的顶部声明多个XML模式 ...
- linux的sysctl基本配置
# Controls the use of TCP syncookiesnet.ipv4.tcp_syncookies = 1 # me write paramnet.ipv4.tcp_timesta ...
- Windows Locale Codes - Sortable list(具体一个语言里还可具体细分,中国是2052,法国是1036)
Windows Locale Codes - Sortable list NOTE: Code page is an outdated method for character encoding, y ...
- java替换包含html标签
说明一下,该文档内容抄自开源中国里的谋篇文章,由于抄袭时间过于久远,已经找不到博主了!暂不能说明出处,源码博主看见勿气,皆可联系本人! 我的博客,文章属于个人收藏,以解日后需要之急! package ...
- Python开发【前端】:CSS
css样式选择器 标签上设置style属性: <body> <div style="background-color: #2459a2;height: 48px;" ...
- Docker应用程序容器技术_转
转自:百度百科 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相 ...
- Trace-语句启动Profiler中暂停的跟踪会出现什么状况
2016-09-08 22:09 整理,未发布Profiler创建客户端跟踪.常规页不保存文件.不勾选服务器处理跟踪数据:事件选择RPC:Completed和SQL:BatchCompleted,列筛 ...
- 罗永浩专访全文记录(转自好奇心日报-http://www.qdaily.com/)
这篇文章是转的,存档做记录,定期看一看,激励自己遇到到困难时,想想人家比自己难多了,自己那点事算个屁啊.学习别人,不要带有傻逼主观倾向性,这样什么也得不到,我看完后,发现有一句话,说的非常好,自己有自 ...
- C++程序员如何入门Unreal Engine 4
摘要: 一位程序员网友小保哥分享自己的UE4快速上手过程,只是笔记,52VR做了一点更加适合阅读的修改,整理给大家. 首先,本文只是针对有比较熟练C++技能的程序员,他可以没有任何图形学或游戏引擎方面 ...
- MICAPS数据文件格式
MICAPS系统的数据结构是建立在文件系统基础上的.其特点是: l 利用目录来区分不同的数据来源.要素和层次,即不同的数据来源.要素和层次的数据要放在不同的目录中.同一目录中的数据只能有时次或时效上 ...