不使用es-hadoop的saveToES,与scala版本冲突问题太多。
不使用bulkprocessor,异步提交,es容易oom,速度反而不快。
使用BulkRequestBuilder同步提交。

主要代码

public static void main(String[] args){
System.setProperty("hadoop.home.dir", "D:\\hadoop");
System.setProperty("es.set.netty.runtime.available.processors", "false");
SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("SendRecord");
conf.set("spark.streaming.backpressure.enabled", "true");
conf.set("spark.streaming.receiver.maxRate", "1000");
conf.set("spark.streaming.kafka.maxRatePerPartition", "1000");
conf.set("es.nodes", "eshost");
conf.set("es.port", "9200");
JavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(2)); Map<String, Object> kafkaParams = new HashMap<>();
kafkaParams.put("bootstrap.servers", "kafkahost:9092");
kafkaParams.put("key.deserializer", StringDeserializer.class);
kafkaParams.put("value.deserializer", StringDeserializer.class);
kafkaParams.put("group.id", "sparkGroup4");
kafkaParams.put("auto.offset.reset", "latest");
kafkaParams.put("enable.auto.commit", false); Collection<String> topics = Arrays.asList("users");
JavaInputDStream<ConsumerRecord<String, String>> stream = KafkaUtils.createDirectStream
(ssc, LocationStrategies.PreferConsistent(), ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams)); JavaDStream<User> kafkaDStream = stream.map(new Function<ConsumerRecord<String, String>, User>() {
@Override
public User call(ConsumerRecord<String, String> record) throws Exception {
Gson gson = new Gson();
return gson.fromJson(record.value(), User.class);
}
}); kafkaDStream.foreachRDD(new VoidFunction<JavaRDD<User>>() {
@Override
public void call(JavaRDD<User> userJavaRDD) throws Exception {
userJavaRDD.foreachPartition(new VoidFunction<Iterator<User>>() {
@Override
public void call(Iterator<User> userIterator) throws Exception {
TransportClient client = ESClient.getClient();
BulkRequestBuilder bulkRequestBuilder = client.prepareBulk();
Map<String, Object> map = new HashMap<>();
while(userIterator.hasNext()){
User user = userIterator.next();
map.put("name", user.getName());
map.put("age", user.getAge());
map.put("desc", user.getDescription());
IndexRequest request = client.prepareIndex("users", "info").setSource(map).request();
bulkRequestBuilder.add(request);
}
if(bulkRequestBuilder.numberOfActions() > 0){
BulkResponse bulkItemResponses = bulkRequestBuilder.execute().actionGet();
}
}
});
}
});
ssc.start(); try {
// Wait for the computation to terminate.
ssc.awaitTermination();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

  

ESClient:

public class ESClient {
public static TransportClient getClient(){
return Holder.client;
} private static class Holder{
private static TransportClient client;
static{
try {
Settings setting = Settings.builder()
.put("cluster.name", "es")
.put("client.transport.sniff", false)
.put("client.transport.ping_timeout", "60s")
.put("client.transport.nodes_sampler_interval", "60s")
.build();
client = new PreBuiltTransportClient(setting);
client.addTransportAddress(new TransportAddress(new InetSocketAddress("eshost",9300)));
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
}
}

  

sparkstreaming消费kafka后bulk到es的更多相关文章

  1. SparkStreaming消费kafka中数据的方式

    有两种:Direct直连方式.Receiver方式 1.Receiver方式: 使用kafka高层次的consumer API来实现,receiver从kafka中获取的数据都保存在spark exc ...

  2. SparkStreaming消费Kafka,手动维护Offset到Mysql

    目录 说明 整体逻辑 offset建表语句 代码实现 说明 当前处理只实现手动维护offset到mysql,只能保证数据不丢失,可能会重复 要想实现精准一次性,还需要将数据提交和offset提交维护在 ...

  3. spark-streaming集成Kafka处理实时数据

    在这篇文章里,我们模拟了一个场景,实时分析订单数据,统计实时收益. 场景模拟 我试图覆盖工程上最为常用的一个场景: 1)首先,向Kafka里实时的写入订单数据,JSON格式,包含订单ID-订单类型-订 ...

  4. Spark streaming消费Kafka的正确姿势

    前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...

  5. [Golang] 消费Kafka的日志提交到ElasticSearch

    0x0 需求 消费Kafka的日志并写入ElasticSearch供查询 0x1 依赖库 golang版Kafka客户端 https://github.com/Shopify/sarama golan ...

  6. SparkStreaming获取kafka数据的两种方式:Receiver与Direct

    简介: Spark-Streaming获取kafka数据的两种方式-Receiver与Direct的方式,可以简单理解成: Receiver方式是通过zookeeper来连接kafka队列, Dire ...

  7. 【Spark】SparkStreaming和Kafka的整合

    文章目录 Streaming和Kafka整合 概述 使用0.8版本下Receiver DStream接收数据进行消费 步骤 一.启动Kafka集群 二.创建maven工程,导入jar包 三.创建一个k ...

  8. 图解SparkStreaming与Kafka的整合,这些细节大家要注意!

    前言 老刘是一名即将找工作的研二学生,写博客一方面是复习总结大数据开发的知识点,一方面是希望帮助更多自学的小伙伴.由于老刘是自学大数据开发,肯定会存在一些不足,还希望大家能够批评指正,让我们一起进步! ...

  9. SparkStreaming和Kafka基于Direct Approach如何管理offset实现exactly once

    在之前的文章<解析SparkStreaming和Kafka集成的两种方式>中已详细介绍SparkStreaming和Kafka集成主要有Receiver based Approach和Di ...

随机推荐

  1. OpenCV 安装与调试

    Visual Studio 是微软提供的面向任何开发者的同类最佳工具. OpenCV(开源计算机视觉库)是一个开源的计算机视觉和机器学习软件库. 目前最新版本:Visual Studio 2019.O ...

  2. Error: Cannot find module 'webpack/bin/config-yargs' 报错原因, webpack@4.X踩的坑~

    1 .使用webpack@4.32.2时, 当我通过package.json的script去执行webpack-dev-server时, 报以下错误:  Error: Cannot find modu ...

  3. Java反射机制(一):认识Class类

    一. 认识Class类 1.1 正常我们再使用一个类时,大多情况是先获取类的对象,然后通过对象去操作类中的属性或方法. 那,大家有没有想过,如果我们已经有了一个类的对象,我能否通过该对象去获取到类的信 ...

  4. win10 uwp xaml 绑定接口

    本文告诉大家如何在 xaml 绑定属性使用显式继承接口 早上快乐 就在你的心问了我一个问题,他使用的属性是显式继承,但是无法在xaml绑定 我写了简单的代码,一个接口和属性 public class ...

  5. Java集合系统

    前言: 要想学习java的集合体系,就必须先了解java的集合框架,总的来说,分为Collection和Map体系. Collection集合框架: Map集合框架: 一. Collection接口 ...

  6. Python--day65--模板语言之filter

    参考的原文链接:http://www.cnblogs.com/liwenzhou/p/7931828.html Filters(过滤器) 在Django的模板语言中,通过使用 过滤器 来改变变量的显示 ...

  7. [转]C#操作Word的超详细总结

    本文中用C#来操作Word,包括: 创建Word: 插入文字,选择文字,编辑文字的字号.粗细.颜色.下划线等: 设置段落的首行缩进.行距: 设置页面页边距和纸张大小: 设置页眉.页码: 插入图片,设置 ...

  8. P1091 剧院广场

    题目描述 柏林首都的剧院广场呈长方形,面积为 \(n \times m\) 平方米.在这座城市的周年纪念日之际,人们决定用方形花岗岩石板铺设广场.每块石板的大小都是 \(a \times a\) . ...

  9. H3C DHCP租约更新

  10. P1046 阶乘

    题目描述 给你一个数N,求 \(N!\) (即:N的阶乘).\(N! = N \times (N-1) \times \dots \times 2 \times 1\) 输入格式 输入一个整数 \(N ...