[bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194
题目大意:给定两个长度为$n$的序列$a$和$b$。求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i}$。
注释:$1\le n\le 10^5$,$0\le a_i,b_i\le 100$。
想法:
显然这是一道$FFT$裸题。
如图:
上面的序列就是$a$序列,下面就是$b$序列。
左图如题意,我们发现当把$b$序列翻转之后就变成了右图的样子,我们设为$d$序列。
我们把$a$序列和$d$序列想象成两个多项式,做多项式乘法之后,$c_i$就等于$\sum\limits_{j=i}^{n-1} a_j\times b_{n-j-1}$
这个卷积的形式我们可以通过$FFT$加速。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 100010
using namespace std; typedef double db;
const db pi=acos(-1);
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
struct cp
{
db x,y;
cp() {x=y=0;}
cp(db x_,db y_) {x=x_,y=y_;}
cp operator + (const cp &a) const {return cp(x+a.x,y+a.y);}
cp operator - (const cp &a) const {return cp(x-a.x,y-a.y);}
cp operator * (const cp &a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}a[N<<2],b[N<<2];
void fft(cp *a,int len,int flg)
{
int i,j,k,t;
cp tmp,w,wn;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(k=2;k<=len;k<<=1)
{
t=k>>1;
wn=cp(cos(2*pi*flg/k),sin(2*pi*flg/k));
for(i=0;i<len;i+=k)
{
w=cp(1,0);
for(j=i;j<i+t;j++)
{
tmp=a[j+t]*w;
a[j+t]=a[j]-tmp;
a[j]=a[j]+tmp;
w=w*wn;
}
}
}
if(flg==-1) for(i=0;i<len;i++) a[i].x/=len;
}
int main()
{
int n=rd(); for(int i=0;i<n;i++) a[i].x=rd(),b[n-i-1].x=rd();
int len=1; while(len<=(n<<1)) len<<=1;
fft(a,len,1); fft(b,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i];
fft(a,len,-1);
for(int i=0;i<n;i++) printf("%d\n",(int)(a[n+i-1].x+0.1));
return 0;
}
小结:$FFT$真强...注意模板别背错了。
[bzoj2194]快速傅立叶之二_FFT的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ2194: 快速傅立叶之二(NTT,卷积)
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1776 Solved: 1055[Submit][Status][Discuss] Descript ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
- BZOJ2194: 快速傅立叶之二 FFT_卷积
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
- 【BZOJ2194】快速傅立叶之二
[BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...
随机推荐
- 【数据分析 R语言实战】学习笔记 第三章 数据预处理 (下)
3.3缺失值处理 R中缺失值以NA表示,判断数据是否存在缺失值的函数有两个,最基本的函数是is.na()它可以应用于向量.数据框等多种对象,返回逻辑值. > attach(data) The f ...
- H.264学习笔记4——变换量化
A.变换量化过程总体介绍 经过帧内(16x16和4x4亮度.8x8色度)和帧间(4x4~16x16亮度.4x4~8x8色度)像素块预测之后,得到预测块的残差,为了压缩残差信息的统计冗余,需要对残差数据 ...
- .Net Mvc EasyUI DataGrid 分页
由于项目的需要,最近一直在学习 .net MVC 和EasyUI.上周写了一个<.Net Mvc 返回Json,动态生成EasyUI Tree>,今天再写一个EasyUI中另一个重要的组件 ...
- Java之抽象和封装
① 如何从现实世界中抽象出类? 根据软件开发需求: 发现类-->发现类的属性-->发现类的方法 ② 构造方法的作用和特点是什么? 作用:在创建对象时执行一些初始化操作 ...
- php从mysql数据库中取数据
php从数据库中取数据 面向过程 <?php $server_name="localhost:3306"; //数据库服务器名称 $username="root& ...
- Android(java)学习笔记202:JNI之hello.c(c代码功能实现)指针语法解析
1. 接下来我们细讲分析一下前面一讲中,c功能实现的代码: (1)hello.c : #include <jni.h> char* getHello() { //////// return ...
- js 复制文字、 复制链接到粘贴板
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- JDK1.8中的Stream详解
Stream简介 Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 XML ...
- C++中何时使用引用
使用引用参数的原因: 程序员能够修改调用函数中的数据对象 通过传递引用而不是整个数据对象,可以提高程序的运行速度. 当数据对象较大时(如结构和类对象),第二个原因最重要,这些也是使用指针参数的原因.这 ...
- java “==”和“equals”
菜呀,只能记笔记了 ==:如果是基本数据类型,比较值,如果是引用类型,比较地址 equals:比较值