[bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194
题目大意:给定两个长度为$n$的序列$a$和$b$。求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i}$。
注释:$1\le n\le 10^5$,$0\le a_i,b_i\le 100$。
想法:
显然这是一道$FFT$裸题。
如图:

上面的序列就是$a$序列,下面就是$b$序列。
左图如题意,我们发现当把$b$序列翻转之后就变成了右图的样子,我们设为$d$序列。
我们把$a$序列和$d$序列想象成两个多项式,做多项式乘法之后,$c_i$就等于$\sum\limits_{j=i}^{n-1} a_j\times b_{n-j-1}$
这个卷积的形式我们可以通过$FFT$加速。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 100010
using namespace std; typedef double db;
const db pi=acos(-1);
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
struct cp
{
db x,y;
cp() {x=y=0;}
cp(db x_,db y_) {x=x_,y=y_;}
cp operator + (const cp &a) const {return cp(x+a.x,y+a.y);}
cp operator - (const cp &a) const {return cp(x-a.x,y-a.y);}
cp operator * (const cp &a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}a[N<<2],b[N<<2];
void fft(cp *a,int len,int flg)
{
int i,j,k,t;
cp tmp,w,wn;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(k=2;k<=len;k<<=1)
{
t=k>>1;
wn=cp(cos(2*pi*flg/k),sin(2*pi*flg/k));
for(i=0;i<len;i+=k)
{
w=cp(1,0);
for(j=i;j<i+t;j++)
{
tmp=a[j+t]*w;
a[j+t]=a[j]-tmp;
a[j]=a[j]+tmp;
w=w*wn;
}
}
}
if(flg==-1) for(i=0;i<len;i++) a[i].x/=len;
}
int main()
{
int n=rd(); for(int i=0;i<n;i++) a[i].x=rd(),b[n-i-1].x=rd();
int len=1; while(len<=(n<<1)) len<<=1;
fft(a,len,1); fft(b,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i];
fft(a,len,-1);
for(int i=0;i<n;i++) printf("%d\n",(int)(a[n+i-1].x+0.1));
return 0;
}
小结:$FFT$真强...注意模板别背错了。
[bzoj2194]快速傅立叶之二_FFT的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ2194: 快速傅立叶之二(NTT,卷积)
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1776 Solved: 1055[Submit][Status][Discuss] Descript ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
- BZOJ2194: 快速傅立叶之二 FFT_卷积
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
- 【BZOJ2194】快速傅立叶之二
[BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...
随机推荐
- Spring框架学习-搭建第一个Spring项目
步骤一:下载Spring开发包. 官网:https://spring.io/ 下载地址:https://repo.spring.io/libs-release-local/org/ ...
- hibernate 批量插入数据
如题,有两种方法 1)使用FLUSH 2)使用JDBC 分别来解释: 1)hibernate在进行数据库操作的时候,都要有事务支持的.可能你曾遇到过,没有加事务,程序会报错的情况. 而事务每次提交的时 ...
- ButterKnife 在父类 点击事件没反应的解决方案
在用继承的方式实现butterKnife的封装的时候遇到问题, butterKnife就在baseActivity中绑定的,但是父类中公共控件点击事件无效.找了半天原因,原来是子类和父类定义的点击方法 ...
- Vue 路由知识三(过渡动画及路由钩子函数)
路由的过渡动画:让路由有过渡动画,需要在<router-view>标签的外部添加<transition>标签,标签还需要一个name属性. <transition nam ...
- Record these plug-ins of vscode
实在无聊透顶.写个随笔记录一下vscode的插件好了. 第一次使用(之前一直在用sublime...),以后再更新吧.record my color too! Visual Studio Code B ...
- PHP运算符考察点
PHP运算符优先级 运算符优先级指定了两个表达式绑定得有多"紧密".例如,表达式 1 + 5 * 3 的结果是 16 而不是 18 是因为乘号(*)的优先级比加号(+)高.必要时可 ...
- centos7.2密码在单用户下面的修改
centos7.2在但用户模式下面的修改 1.开机启动 2.grub模式按E健 3.Linux16行的"ro"修改为 "rw init=/sysroot/bin/sh&q ...
- numpy调试
x1 = np.arange(9.0) 结果就是: array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.]) 拿这个来初始化进行调试
- ios打电话发短信接口
电话.短信是手机的基础功能,iOS中提供了接口,让我们调用.这篇文章简单的介绍一下iOS的打电话.发短信在程序中怎么调用. 1.打电话 [[UIApplication sharedApplicatio ...
- windows mac配置host方法
配置host方法如下: 1.windows 系统配置host (1)打开电脑的系统盘(一般默认为C盘):C盘 -> Windows -> System32 -> drives -&g ...