传送门

f[i] 表示送前 i 头牛过去再回来的最短时间

f[i] = min(f[i], f[j] + sum[i - j] + m) (0 <= j < i)

——代码

 #include <cstdio>
#include <iostream> const int MAXN = , INF = ;
int n, m;
int sum[MAXN], f[MAXN]; inline long long read()
{
long long x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline int min(int x, int y)
{
return x < y ? x : y;
} int main()
{
int i, j, x;
n = read();
m = read();
sum[] = m;
for(i = ; i <= n; i++)
{
x = read();
sum[i] = x + sum[i - ];
}
for(i = ; i <= n; i++)
{
f[i] = INF;
for(j = ; j < i; j++) f[i] = min(f[i], f[j] + sum[i - j] + m);
}
printf("%d\n", f[n] - m);
return ;
}

[luoguP2904] [USACO08MAR]跨河River Crossing(DP)的更多相关文章

  1. [USACO08MAR]跨河River Crossing dp

    题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...

  2. bzoj1617 / P2904 [USACO08MAR]跨河River Crossing

    P2904 [USACO08MAR]跨河River Crossing 显然的dp 设$f[i]$表示运走$i$头奶牛,木筏停在未过河奶牛一侧所用的最小代价 $s[i]$表示一次运$i$头奶牛到对面的代 ...

  3. 【洛谷】P2904 [USACO08MAR]跨河River Crossing(dp)

    题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...

  4. P2904 [USACO08MAR]跨河River Crossing

    题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...

  5. 洛谷—— P2904 [USACO08MAR]跨河River Crossing

    https://www.luogu.org/problem/show?pid=2904 题目描述 Farmer John is herding his N cows (1 <= N <= ...

  6. 【洛谷2904/BZOJ1617】[USACO08MAR]跨河River Crossing(动态规划)

    题目:洛谷2904 分析: 裸dp-- dp方程也不难想: \(dp[i]\)表示运\(i\)头牛需要的最短时间,\(sum[i]\)表示一次运\(i\)头牛(往返)所需的时间,则 \[dp[i]=m ...

  7. 洛谷 P2904 [USACO08MAR]跨河River Crossing

    题目 动规方程 f[i]=min(f[i],f[i−j]+sum) 我们默认为新加一头牛,自占一条船.想象一下,它不断招呼前面的牛,邀请它们坐自己这条船,当且仅当所需总时间更短时,前一头奶牛会接受邀请 ...

  8. USACO River Crossing

    洛谷 P2904 [USACO08MAR]跨河River Crossing https://www.luogu.org/problem/P2904 JDOJ 2574: USACO 2008 Mar ...

  9. BZOJ 1617: [Usaco2008 Mar]River Crossing渡河问题( dp )

    dp[ i ] = max( dp[ j ] + sum( M_1 ~ M_( i - j ) ) + M , sum( M_1 ~ M_i ) ) ( 1 <= j < i )  表示运 ...

随机推荐

  1. bzoj 1631: [Usaco2007 Feb]Cow Party【spfa】

    正反加边分别跑spfa最短路,把两次最短路的和求个max就是答案 #include<iostream> #include<cstdio> #include<queue&g ...

  2. bzoj 3498: PA2009 Cakes【瞎搞】

    参考:https://www.cnblogs.com/spfa/p/7495438.html 为什么邻接表会TTTTTTTLE啊...只能用vector? 把点按照点权从大到小排序,把无向边变成排名靠 ...

  3. n阶完全生成图的数量

    有些事不是看到了希望才去坚持,而是坚持了才会看到希望 问题 I: 星际之门(一) 时间限制: Sec 内存限制: MB 提交: 解决: [提交][状态][讨论版] 题目描述 公元3000年,子虚帝国统 ...

  4. Java多线程(六)守护进程

    守护进程:当进程中不存在非守护线程了,则守护线程自动销毁: public class DaemonThread extends Thread{ private int i =0; public voi ...

  5. Linux系统编程---文件I/O(open、read、write、lseek、close)

    文件描述符 定义:对内核而言,文件描述符相当于一个文件的标识,它是一个非负整数,当打开(open)一个现有文件或者创建(creat)一个新文件时,内核会向进程返回一个文件描述符 在unix中(文件描述 ...

  6. ACM_Appleman and Card Game(简单贪心)

    Appleman and Card Game Time Limit: 2000/1000ms (Java/Others) Problem Description: Appleman has n car ...

  7. [译]HTTP POSTing

    HTTP POSTing We get many questions regarding how to issue HTTP POSTs with libcurl the proper way. Th ...

  8. 网站开发综合技术 三 JavaScript的DOM操作

    第3部分 JavaScript的DOM操作 1.DOM的基本概念 DOM是文档对象模型,这种模型为树模型:文档是指标签文档:对象是指文档中每个元素:模型是指抽象化的东西. 2.Windows对象操作 ...

  9. WordPress百度熊掌号页面改造(纯代码实现)

    一.粉丝关注改造 1.添加熊掌号ID声明 ID声明 <script src="//msite.baidu.com/sdk/c.js?appid=你的熊掌ID">< ...

  10. C# 面向对象之类和方法

    一.新建一个类,用来存放属性和方法( 属性和方法写在同一个类中). 先新建一个类: using System; using System.Collections.Generic; using Syst ...