[bzoj2431][HAOI2009][逆序对数列] (dp计数)
Description
Input
第一行为两个整数n,k。
Output
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
Sample Input
Sample Output
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
100%的数据 n<=1000,k<=1000
Solution
为了满足无后效性要求,我们从小到大插入数字
设f[i][j]为放置好数字[1,i-1]后考虑放i并总共得到j对逆序对的数列数量
那么f[i][j]=sum(f[i-1][k]); (k∈[j-i+1,j])
#include <stdio.h>
#define mo 10000
int n,k,f[][],s[][];
int main(){
scanf("%d%d",&n,&k);
f[][]=;
for(int i=;i<=k;i++)
s[][i]=;
for(int i=;i<=n;i++){
for(int j=;j<=k;j++){
f[i][j]=s[i-][j];
if(j-i>=)f[i][j]-=s[i-][j-i];
f[i][j]=(f[i][j]+mo)%mo;
}
s[i][]=;
for(int j=;j<=k;j++)
s[i][j]=(s[i][j-]+f[i][j])%mo;
}
printf("%d\n",f[n][k]);
return ;
}
[bzoj2431][HAOI2009][逆序对数列] (dp计数)的更多相关文章
- BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [BZOJ2431][HAOI2009]逆序对数列(DP)
从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- 【bzoj2431】[HAOI2009]逆序对数列 dp
题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...
- bzoj2431: [HAOI2009]逆序对数列(DP)
f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...
- bzoj2431: [HAOI2009]逆序对数列
dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...
随机推荐
- oracle10G 数据库名、实例名、ORACLE_SID 及创建数据库- hl3292转载修改(实践部分待校验)
数据库名.实例名.数据库域名.全局数据库名.服务名 , 这是几个令很多初学者容易混淆的概念.相信很多初学者都与我一样被标题上这些个概念搞得一头雾水.我们现在就来把它们弄个明白. 一.数据库名 什么是数 ...
- npm 是干什么的?
网上的 npm 教程主要都在讲怎么安装.配置和使用 npm,却不告诉新人「为什么要使用 npm」.今天我就来讲讲这个话题. 本文目标读者是「不太了解 npm 的新人」,大神您别看了,不然又说我啰嗦了 ...
- js原始数据类型和引用数据类型=>callback数据传输原理
摘要:js的数据类型有种划分方式为 原始数据类型和 引用数据类型. 原始数据类型 存储在栈(stack)中的简单数据段,也就是说,它们的值直接存储在变量访问的位置.栈区包括了 变量的标识符和变量的值. ...
- Codeforces 1131 (div 2)
链接:http://codeforces.com/contest/1131 A Sea Battle 利用良心出题人给出的图,不难看出答案为\(2*(h1+h2)+2*max(w1,w2)+4\)由于 ...
- 二分图最大匹配(匈牙利算法) POJ 3020 Antenna Placement
题目传送门 /* 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 */ #include ...
- 使用Oracle SQL Developer迁移MySQL至Oracle数据库
Oracle SQL Developer是Oracle官方出品的数据库管理工具.本文使用Oracle SQL Developer执行从MySQL迁移至Oracle数据库的操作. 2017年3月6日 操 ...
- php函数的定义和声明
1.函数的定义 函数是一个被命名的独立的代码段,它执行特定任务,并可以给调用它的程序返回值. 2.函数的优点 提高程序的重用性 提高程序的可维护性 可以提高软件的开发效率 提高软件的可靠性 控制程序的 ...
- VC++常见错误原因解析--error LNK2019: 无法解析的外部符号 "public: void __thiscall
根据个人遇到这个错误时的记录,原因可以分为一下几种: 原因一: 只是在.h里面声明了某个方法, 没有在cpp里面实现 . 具体讲,有时候在头文件中声明了需要的方法,确实忘记了在源文件中实现: 有时候在 ...
- 1619. [HEOI2012]采花
1619. [HEOI2012]采花 ★★☆ 输入文件:1flower.in 输出文件:1flower.out 简单对比 时间限制:5 s 内存限制:128 MB [题目描述] 萧薰儿 ...
- JS求斐波那契数列的N项
第一种求法: <!DOCTYPE html><html lang="en"><head> <meta charset="UTF- ...