[bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环
题目
题解
这个题是一个经典的分数规划问题。
把题目形式化地表示,就是
\]
整理一下,就是
\]
定义新的函数
\]
显然这个函数单调,我们二分\(\lambda\),等价于求一个负环。
如果用spfa求负环会Tle,所以学习了用dfs求负环,如代码所示。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 3005 * 2;
#define exp 1e-10
const double inf = 1000000000;
int n, m;
struct edge {
int to;
double value;
};
vector<edge> G[maxn];
vector<edge> rg[maxn];
int vis[maxn];
int flag;
double dist[maxn];
inline void spfa(int x) {
int i;
vis[x] = false;
for (i = 0; i < rg[x].size(); i++) {
edge &e = rg[x][i];
if (dist[e.to] > dist[x] + e.value)
if (!vis[e.to]) {
flag = true;
break;
} else {
dist[e.to] = dist[x] + e.value;
spfa(e.to);
}
}
vis[x] = true;
}
bool check(double lambda) {
for (int i = 1; i <= n; i++) {
rg[i].clear();
for (int j = 0; j < G[i].size(); j++) {
rg[i].push_back((edge){G[i][j].to, (double)G[i][j].value - lambda});
}
}
memset(vis, 1, sizeof(vis));
memset(dist, 0, sizeof(dist));
flag = false;
for (int i = 1; i <= n; i++) {
spfa(i);
if (flag)
return true;
}
return false;
}
int main() {
// freopen("input", "r", stdin);
scanf("%d %d", &n, &m);
int tot = 0;
for (int i = 1; i <= m; i++) {
int x, y;
double z;
scanf("%d %d %lf", &x, &y, &z);
G[x].push_back((edge){y, z});
tot += z;
}
double l = -inf, r = inf;
while (l + exp < r) {
double mid = (l + r) / 2;
if (check(mid))
r = mid;
else
l = mid;
}
printf("%.8f", l);
}
[bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环的更多相关文章
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
- 【bzoj1486】[HNOI2009]最小圈 分数规划+Spfa
题目描述 样例输入 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 样例输出 3.66666667 题解 分数规划+Spfa判负环 二分答案mid,并将所有边权减去mid,然后再判 ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- Luogu3199 HNOI2009 最小圈 分数规划、SPFA
传送门 可以发现它的式子是一个分数规划的式子,所以可以二分答案,将所有边权减掉当前二分值之后跑一边$SPFA$判断负环即可. 然而这道题把$BFS-SPFA$卡掉了却没卡$DFS-SPFA$ 出题人: ...
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- 2018.09.09 poj2949Word Rings(01分数规划+spfa判环)
传送门 这题要先巧妙的转化一下. 对于每个字符串,我们把头尾的两个小字符串对应的点连边,边权是这个字符串的长度. 这样最多会出现26*26个点. 这个时候就只用求出边权和跟边数的最大比值了. 这个显然 ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- 【BZOJ1486】【HNOI2009】最小圈 分数规划 dfs判负环。
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
随机推荐
- 【算法】 string 转 int
[算法] string 转 int 遇到的一道面试题, 当时只写了个思路, 现给出具体实现 ,算是一种比较笨的实现方式 public class StringToInt { /// <summa ...
- mysql连接jdbc查询代码
package com.answer.test; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.S ...
- Android PopupWindow 疑难杂症之宽度WRAP_CONTENT
一直以来都觉得 Android 中的 PopupWindow 不好用.主要有以下两点:1.宽度不好控制2.位置不好控制 今天单说第1点. 由于应用有好几种国家的语言,加上各设备宣染效果不完全一样,对p ...
- 在Linux下通过rpm打包发布Java程序
这个东西涉及的内容较多,根据下面这些文章慢慢学习 一个简单的例子 http://blog.csdn.net/king_on/article/details/7169384 按照文章中的步骤来,打包之后 ...
- 一个知乎日报pwa
前几天写了一篇文章关于如何实现一个简单版的pwa应用,端午撸了一个简易版知乎日报pwa. 关于如何写一个pwa,这里就不多介绍了,请移步这里.应用使用vue+vuex+axios,API这里,这里做了 ...
- 步骤2:JMeter 分布式测试(性能测试大并发、远程启动解决方案)
转载(记录) http://www.cnblogs.com/fengpingfan/p/5583954.html http://www.cnblogs.com/puresoul/p/4844539.h ...
- Vue学习(五):列表渲染
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- SPRITEKIT游戏框架之关于PHYSICS物理引擎属性
Spritekit提供了一个默认的物理模拟系统,用来模拟真实物理世界,可以使得编程者将注意力从力学碰撞和重力模拟的计算中解放出来,通过简单地代码来实现物理碰撞的模拟,而将注意力集中在更需要花费精力的地 ...
- Leetcode 680.验证回文字符串
验证回文字符串 给定一个非空字符串 s,最多删除一个字符.判断是否能成为回文字符串. 示例 1: 输入: "aba" 输出: True 示例 2: 输入: "abca&q ...
- GCD LCM 最大公约数 最小公倍数 分数模板 (防溢出优化完成)
自己写的一个分数模板,在运算操作时进行了防溢出的优化: ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } ll lcm(ll a, ll b) { ...