【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)
题目链接
题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
这是道状压\(DP\)好题啊。。
定义状态:一个二进制数某一位为\(1\)表示该位放了国王,反之亦然。
设\(f[i][j][k]\)表示,前\(i\)行,已经放了\(j\)个国王,并且第\(i\)的状态为\(k\)时的方案数。
直接枚举所有状态显然不可行,于是可以先预处理去所有相邻两格不矛盾的状态,也就是每一行可能出现的状态。
显然,当上一行的状态与该行的状态不矛盾时,状态能转移。
所以,枚举这一行的状态和上一行的状态转移就行了,边界第一行所有状态的方案数都为\(1\)。
怎么判断矛不矛盾呢?
把这一行的状态和上一行的状态进行按位与运算就能判断是否存在上下矛盾。
但题目要求\(2\)个国王不能有公共顶点,把这行的状态左移一位再按位与,然后右移一位再按位与就行了。
当三次与运算的结果都是\(0\)时,状态能转移。
#include <cstdio>
#define Open(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout);
#define Close fclose(stdin);fclose(stdout);
const int MAXN = 12;
int n, k;
int vis[MAXN][MAXN];
int s[1024], p[1024];
void dfs(int now, int S, int fi){ //dfs求出一行所有可能的状态,now是当前到第几位了,S是当前状态,fi是已经放了几个国王了
if(now > n){
s[++s[0]] = S; p[s[0]] = fi;
return;
}
dfs(now + 1, S, fi); //不放
if(now == 1 || !(S & (1 << (now - 2)))) dfs(now + 1, S | (1 << (now - 1)), fi + 1); //放
}
long long f[MAXN][MAXN * MAXN][1026];
long long ans;
int main(){
scanf("%d%d", &n, &k);
dfs(1, 0, 0);
for(int i = 1; i <= s[0]; ++i) //边界
f[1][p[i]][i] = 1;
for(int i = 2; i <= n; ++i)
for(int j = 1; j <= s[0]; ++j) //上一行状态
for(int o = 1; o <= s[0]; ++o){ //该行状态
if((s[j] & s[o]) || ((s[j] << 1) & s[o]) || ((s[o] << 1) & s[j])) continue; //能转移
for(int l = p[o]; l <= k; ++l) //转移
f[i][l][o] += f[i - 1][l - p[o]][j];
}
for(int i = 1; i <= s[0]; ++i) ans += f[n][k][i];
printf("%lld\n", ans);
return 0;
}
【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)的更多相关文章
- P1896 [SCOI2005]互不侵犯 状压dp
正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...
- 洛谷——P1896 [SCOI2005]互不侵犯
P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...
- 洛谷 P1896 [SCOI2005]互不侵犯
洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...
- 洛谷P1896 [SCOI2005]互不侵犯King
P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...
- 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)
洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...
- BZOJ1087[SCOI2005]互不侵犯——状压DP
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...
- SCOI2005 互不侵犯 [状压dp]
题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...
- [SCOI2005]互不侵犯 (状压$dp$)
题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...
- 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...
- 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...
随机推荐
- Android OpenStreetMap(OSM) 使用 osmbonuspack 进行导航
关于OpenStreetMap的介绍,国内还是很少,csdn上面有一篇,写的不错,我也就不再做重复的事情了. 这里贴出链接地址:http://blog.csdn.net/mad1989/article ...
- 数据库sql命令
本文为转载,原文地址:http://www.cnblogs.com/cangqiongbingchen/p/4530333.html 1.说明:创建数据库CREATE DATABASE databas ...
- HDU 4714 Tree2cycle(树状DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup)
Description A tree with N nodes and N-1 edges is given. To connect or disconnect one edge, we need 1 ...
- 有关于PHP的基础知识
(1) l 长字符串表示,必须放在“<<<heredoc”和 “heredoc;”之间.主要是<<<,其次是也可以不使用heredoc. l “<< ...
- nginx安装-del
1.检测是否安装 rpm -q xxx2. 安装nginx前,我们首先要确保系统安装了g++.gcc.openssl-devel.pcre-devel和zlib-devel软件,可通过如图所示命令进行 ...
- 高效的序列化组件 Protobuf-net
什么是ProtoBuf-net Protobuf是google开源的一个项目,用户数据序列化反序列化,google声称google的数据通信都是用该序列化方法.它比xml格式要少的多,甚至比二进制数据 ...
- [剑指Offer] 23.二叉搜索树的后序遍历
[思路]BST的后序序列的合法序列是,对于一个序列S,最后一个元素是x (也就是根),如果去掉最后一个元素的序列为T,那么T满足:T可以分成两段,前一段(左子树)小于x,后一段(右子树)大于x,且这两 ...
- iBatis的基本使用
项目结构: 依赖jar: 数据库依赖: CREATE TABLE `person` ( `id` ) NOT NULL AUTO_INCREMENT, `name` ) NOT NULL, PRIMA ...
- Hibernate对象状态
对象状态 瞬时(transient) 自己new出来的对象,数据库没有记录与之对应,与session也没有关联 持久(persistent) 数据库中有记录与之对应,当前与session有关联,相关的 ...
- HTML5<canvas>标签:使用canvas元素在网页上绘制线条和圆(1)
什么是 Canvas? HTML5 的 canvas 元素使用 JavaScript 在网页上绘制图像. 画布是一个矩形区域,您可以控制其每一像素. canvas 拥有多种绘制路径.矩形.圆形.字符以 ...