【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)
题目链接
题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
这是道状压\(DP\)好题啊。。
定义状态:一个二进制数某一位为\(1\)表示该位放了国王,反之亦然。
设\(f[i][j][k]\)表示,前\(i\)行,已经放了\(j\)个国王,并且第\(i\)的状态为\(k\)时的方案数。
直接枚举所有状态显然不可行,于是可以先预处理去所有相邻两格不矛盾的状态,也就是每一行可能出现的状态。
显然,当上一行的状态与该行的状态不矛盾时,状态能转移。
所以,枚举这一行的状态和上一行的状态转移就行了,边界第一行所有状态的方案数都为\(1\)。
怎么判断矛不矛盾呢?
把这一行的状态和上一行的状态进行按位与运算就能判断是否存在上下矛盾。
但题目要求\(2\)个国王不能有公共顶点,把这行的状态左移一位再按位与,然后右移一位再按位与就行了。
当三次与运算的结果都是\(0\)时,状态能转移。
#include <cstdio>
#define Open(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout);
#define Close fclose(stdin);fclose(stdout);
const int MAXN = 12;
int n, k;
int vis[MAXN][MAXN];
int s[1024], p[1024];
void dfs(int now, int S, int fi){ //dfs求出一行所有可能的状态,now是当前到第几位了,S是当前状态,fi是已经放了几个国王了
if(now > n){
s[++s[0]] = S; p[s[0]] = fi;
return;
}
dfs(now + 1, S, fi); //不放
if(now == 1 || !(S & (1 << (now - 2)))) dfs(now + 1, S | (1 << (now - 1)), fi + 1); //放
}
long long f[MAXN][MAXN * MAXN][1026];
long long ans;
int main(){
scanf("%d%d", &n, &k);
dfs(1, 0, 0);
for(int i = 1; i <= s[0]; ++i) //边界
f[1][p[i]][i] = 1;
for(int i = 2; i <= n; ++i)
for(int j = 1; j <= s[0]; ++j) //上一行状态
for(int o = 1; o <= s[0]; ++o){ //该行状态
if((s[j] & s[o]) || ((s[j] << 1) & s[o]) || ((s[o] << 1) & s[j])) continue; //能转移
for(int l = p[o]; l <= k; ++l) //转移
f[i][l][o] += f[i - 1][l - p[o]][j];
}
for(int i = 1; i <= s[0]; ++i) ans += f[n][k][i];
printf("%lld\n", ans);
return 0;
}
【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)的更多相关文章
- P1896 [SCOI2005]互不侵犯 状压dp
正解:状压dp 解题报告: 看到是四川省选的时候我心里慌得一批TT然后看到难度之后放下心来觉得大概没有那么难 事实证明我还是too young too simple了QAQ难到爆炸TT我本来还想刚一道 ...
- 洛谷——P1896 [SCOI2005]互不侵犯
P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...
- 洛谷 P1896 [SCOI2005]互不侵犯
洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...
- 洛谷P1896 [SCOI2005]互不侵犯King
P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...
- 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)
洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...
- BZOJ1087[SCOI2005]互不侵犯——状压DP
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入 只有一行,包含两个数N,K ( ...
- SCOI2005 互不侵犯 [状压dp]
题目传送门 题目大意:有n*n个格子,你需要放置k个国王使得它们无法互相攻击,每个国王的攻击范围为上下左走,左上右上左下右下,共8个格子,求最多的方法数 看到题目,是不是一下子就想到了玉米田那道题,如 ...
- [SCOI2005]互不侵犯 (状压$dp$)
题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 位国王,且最后一位状态为 \(k\) . 然后就可以很轻松的转移了 ...
- 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...
- 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...
随机推荐
- 我所认识的XPath
实例demo 测试demo所需要xml测试数据 <?xml version="1.0" encoding="iso-8859-1"?> <bo ...
- [CH5302]金字塔
题面 虽然探索金字塔是极其老套的剧情,但是有一队探险家还是到了某金字塔脚下.经过多年的研究,科学家对这座金字塔的内部结构已经有所了解.首先,金字塔由若干房间组成,房间之间连有通道.如果把房间看作节点, ...
- 容器基础(七): 使用docker compose部署程序
配置 在上一节的基础上, 增加如下的docker-compose.yml文件, 然后用docker-compose up命令启动容器进行部署: version: " services: s ...
- kaldi基于GMM的单音素模型 训练部分
目录 1. gmm-init-mono 模型初始化 2. compile-train-graghs 训练图初始化 3. align-equal-compiled 特征文件均匀分割 4. gmm-acc ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- DFS——hdu5682zxa and leaf
一.题目回顾 题目链接:zxa and leaf Sample Input 2 3 2 1 2 1 3 2 4 3 9 6 2 1 2 1 3 1 4 2 5 2 6 3 6 5 9 Sample ...
- mysql与hive2.1.1安装和配置
1.mysql安装 这个安装很简单,是在线安装,只需要按顺序执行一下几个命令就ok了. (1)sudo apt-get install mysql-server (2)sudo apt-get ins ...
- 基于bootstrap动态分页
bootstrap本身的分页有分页组件 但是却是静态的,无法满足要求,分页必须根据当前的总页数来展示 使用插件bootstrap-paginator github下载地址 https://github ...
- StrutsResultSupport的使用
在有特殊情况时:如果没有异常信息,但是有错误并且有错误信息等内容:此时也需要进行友好的错误处理的话,那么可以借助StrutsResultSupport 返回结果类型来实现特定处理.此种方式先需要继承S ...
- 【bzoj4750】密码安全 单调栈
题目描述 模10^9+61 输入 第一行包含一个正整数 T ,表示有 T 组测试数据. 接下来依次给出每组测试数据.对于每组测试数据: 第一行包含一个正整数 n . 第二行包含 n 个非负整数,表示 ...