业务需求,有一部分动态字段,需要在程序中动态加载并解析表达式:

实现方案1):在MapFunction、MapPartitionFunction中使用FelEngine进行解析:

        FelEngine fel = FelEngine.instance;
FelContext ctx = fel.getContext();
ctx.set("rsrp", 100);
ctx.set("rsrq", 80); expValue = Double.valueOf(String.valueOf(fel.eval("rsrp*10-rsrq*8")));

实现方案2):采用selectExpr()函数

package com.dx.streaming.drivers.test;

import org.apache.spark.api.java.function.MapPartitionsFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
import org.apache.spark.sql.catalyst.encoders.RowEncoder;
import org.apache.spark.sql.streaming.OutputMode;
import org.apache.spark.sql.streaming.StreamingQueryException;
import org.apache.spark.sql.streaming.Trigger;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import scala.collection.JavaConversions;
import scala.collection.Seq; import java.util.*;
import java.util.concurrent.TimeUnit; public class MrsExpressionDoWithSelectExp {
public static void main(String[] args) {
SparkSession sparkSession = SparkSession.builder().appName("test").master("local[*]").getOrCreate(); StructType type = new StructType();
type = type.add("id", DataTypes.StringType);
type = type.add("cellname", DataTypes.StringType);
type = type.add("rsrp", DataTypes.StringType);
type = type.add("rsrq", DataTypes.StringType);
ExpressionEncoder<Row> encoder = RowEncoder.apply(type); Dataset<String> ds = sparkSession.readStream().textFile("E:\\test-structured-streaming-dir\\*");
Dataset<Row> rows = ds.mapPartitions(new MapPartitionsFunction<String, Row>() {
private static final long serialVersionUID = -1988302292518096148L; @Override
public Iterator<Row> call(Iterator<String> input) throws Exception {
List<Row> rows = new ArrayList<>();
while (input.hasNext()) {
String line = input.next();
String[] items = line.split(",");
rows.add(RowFactory.create(items));
}
return rows.iterator();
}
}, encoder);
rows.printSchema(); int dynamicExprLength=10;
Map<String, String> expMap = new LinkedHashMap<>();
// 从配置文件加载配置公式
expMap.put("rsrpq_count", "rsrp+rsrp");
expMap.put("rsrpq_sum", "rsrp*10+rsrq*10");
for(int i=0;i<dynamicExprLength;i++){
expMap.put("rsrpq_sum"+i, "rsrp*10+rsrq*10");
} expMap.put("$rsrpq_avg", "rsrpq_sum/rsrpq_count"); List<String> firstLayerExpList = new ArrayList<>();
List<String> secondLayerExpList = new ArrayList<>();
firstLayerExpList.add("*");
secondLayerExpList.add("*"); for (Map.Entry<String, String> kv : expMap.entrySet()) {
if (kv.getKey().startsWith("$")) {
secondLayerExpList.add("(" + kv.getValue() + ") as " + kv.getKey().replace("$", ""));
} else {
firstLayerExpList.add("(" + kv.getValue() + ") as " + kv.getKey());
}
} // 第一层计算:select *,(rsrp+rsrp) as rsrpq_count,(rsrp*10+rsrq*10) as rsrpq_sum
//rows = rows.selectExpr(firstLayerExpList.toArray(new String[firstLayerExpList.size()] ));
Seq<String> firstLayerExpSeq = JavaConversions.asScalaBuffer(firstLayerExpList);
rows = rows.selectExpr(firstLayerExpSeq);
//rows.show(); // 第二层计算:select *,(rsrpq_sum/rsrpq_count) as rsrpq_avg
//rows = rows.selectExpr(secondLayerExpList.toArray(new String[secondLayerExpList.size()] ));
Seq<String> secondLayerExpSeq = JavaConversions.asScalaBuffer(secondLayerExpList);
rows = rows.selectExpr(secondLayerExpSeq); rows.printSchema();
//rows.show();
rows.writeStream().format("console").outputMode(OutputMode.Append()).trigger(Trigger.ProcessingTime(1,TimeUnit.MINUTES)).start();
try {
sparkSession.streams().awaitAnyTermination();
} catch (StreamingQueryException e) {
e.printStackTrace();
} }
}

此时动态列dynamicExprLength为10,可以正常输出。

ds.selectExpr()问题发现:

当列设置为500或者1000时,本地测试出现以下问题:

19/07/18 14:18:18 INFO CodeGenerator: Code generated in 105.715218 ms
19/07/18 14:18:19 WARN CodeGenerator: Error calculating stats of compiled class.
java.io.EOFException
at java.io.DataInputStream.readFully(DataInputStream.java:197)
at java.io.DataInputStream.readFully(DataInputStream.java:169)
at org.codehaus.janino.util.ClassFile.loadAttribute(ClassFile.java:1509)
at org.codehaus.janino.util.ClassFile.loadAttributes(ClassFile.java:644)
at org.codehaus.janino.util.ClassFile.loadFields(ClassFile.java:623)
at org.codehaus.janino.util.ClassFile.<init>(ClassFile.java:280)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$$anonfun$recordCompilationStats$1.apply(CodeGenerator.scala:996)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$$anonfun$recordCompilationStats$1.apply(CodeGenerator.scala:993)
at scala.collection.Iterator$class.foreach(Iterator.scala:750)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1202)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$.recordCompilationStats(CodeGenerator.scala:993)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$.org$apache$spark$sql$catalyst$expressions$codegen$CodeGenerator$$doCompile(CodeGenerator.scala:961)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$$anon$1.load(CodeGenerator.scala:1027)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$$anon$1.load(CodeGenerator.scala:1024)
at org.spark_project.guava.cache.LocalCache$LoadingValueReference.loadFuture(LocalCache.java:3599)
at org.spark_project.guava.cache.LocalCache$Segment.loadSync(LocalCache.java:2379)
at org.spark_project.guava.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2342)
at org.spark_project.guava.cache.LocalCache$Segment.get(LocalCache.java:2257)
at org.spark_project.guava.cache.LocalCache.get(LocalCache.java:4000)
at org.spark_project.guava.cache.LocalCache.getOrLoad(LocalCache.java:4004)
at org.spark_project.guava.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4874)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator$.compile(CodeGenerator.scala:906)
at org.apache.spark.sql.catalyst.expressions.codegen.GenerateUnsafeProjection$.create(GenerateUnsafeProjection.scala:412)
at org.apache.spark.sql.catalyst.expressions.codegen.GenerateUnsafeProjection$.create(GenerateUnsafeProjection.scala:366)
at org.apache.spark.sql.catalyst.expressions.codegen.GenerateUnsafeProjection$.create(GenerateUnsafeProjection.scala:32)
at org.apache.spark.sql.catalyst.expressions.codegen.CodeGenerator.generate(CodeGenerator.scala:890)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.extractProjection$lzycompute(ExpressionEncoder.scala:263)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.extractProjection(ExpressionEncoder.scala:263)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.toRow(ExpressionEncoder.scala:287)
at org.apache.spark.sql.SparkSession$$anonfun$3.apply(SparkSession.scala:573)
at org.apache.spark.sql.SparkSession$$anonfun$3.apply(SparkSession.scala:573)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:370)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:235)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/07/18 14:18:19 INFO CodeGenerator: Code generated in 1354.475257 ms

当发布到yarn上不管是yarn-client还是yarn-cluster都会出现卡死问题,executor/driver创建起来,并且都分配了资源,但是没有任务被分配。

而且没有任何错误日志抛出,一直卡顿,可以持续到无限时间。

Spark2.x(五十四):在spark structured streaming下测试ds.selectExpr(),当返回列多时出现卡死问题。的更多相关文章

  1. Spark2.x(五十五):在spark structured streaming下sink file(parquet,csv等),正常运行一段时间后:清理掉checkpoint,重新启动app,无法sink记录(file)到hdfs。

    场景: 在spark structured streaming读取kafka上的topic,然后将统计结果写入到hdfs,hdfs保存目录按照month,day,hour进行分区: 1)程序放到spa ...

  2. Spark2.2(三十八):Spark Structured Streaming2.4之前版本使用agg和dropduplication消耗内存比较多的问题(Memory issue with spark structured streaming)调研

    在spark中<Memory usage of state in Spark Structured Streaming>讲解Spark内存分配情况,以及提到了HDFSBackedState ...

  3. Spark2.3(四十二):Spark Streaming和Spark Structured Streaming更新broadcast总结(二)

    本次此时是在SPARK2,3 structured streaming下测试,不过这种方案,在spark2.2 structured streaming下应该也可行(请自行测试).以下是我测试结果: ...

  4. Spark2.3(三十五)Spark Structured Streaming源代码剖析(从CSDN和Github中看到别人分析的源代码的文章值得收藏)

    从CSDN中读取到关于spark structured streaming源代码分析不错的几篇文章 spark源码分析--事件总线LiveListenerBus spark事件总线的核心是LiveLi ...

  5. Spark2.3(三十四):Spark Structured Streaming之withWaterMark和windows窗口是否可以实现最近一小时统计

    WaterMark除了可以限定来迟数据范围,是否可以实现最近一小时统计? WaterMark目的用来限定参数计算数据的范围:比如当前计算数据内max timestamp是12::00,waterMar ...

  6. Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)

    背景: 需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新 ...

  7. 第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection)

    第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection) Scrapy提供了方便的收集数据的机制.数据以key/value方式存储,值大多是计数 ...

  8. “全栈2019”Java第五十四章:多态详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  9. 孤荷凌寒自学python第五十四天使用python来删除Firebase数据库中的文档

    孤荷凌寒自学python第五十四天使用python来删除Firebase数据库中的文档 (完整学习过程屏幕记录视频地址在文末) 今天继续研究Firebase数据库,利用google免费提供的这个数据库 ...

随机推荐

  1. Linux内核学习散知识整理

    1.container_of(ptr, type, member) 使用方法:根据指向结构体type的成员member的指针ptr,获取指向改结构体的指针 /** * container_of - c ...

  2. Linux“七大蠢”收录

    这个系列的文章,前段时间在微信公共平台(阿里技术嘉年华)上看过,写得很好. Linux"七大蠢"之一:万般皆文本 Linux"七大蠢"之二:处处有脚本 Linu ...

  3. 【技巧】如何使用客户端发布BLOG+如何快速发布微信公众号文章

    [技巧]如何使用客户端发布BLOG+如何快速发布微信公众号文章   1  BLOG文档结构图     2  前言部分   2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也 ...

  4. 大数据量高并发的数据库优化,sql查询优化

    一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. ...

  5. 计算地图上两点间的距离PHP类

    计算地图上两点间的距离,使用的是谷歌地图 <?php class GeoHelper { /** * @param int $lat1 * @param int $lon1 * @param i ...

  6. thrift中的概念

    Thrift的网络栈 Apache Thrift的网络栈的简单表示如下: +-------------------------------------------+ | Server | | (sin ...

  7. Linux 常见 RAID 及软 RAID 创建

    RAID可以大幅度的提高磁盘性能,以及可靠性,这么好的技术怎么能不掌握呢!此篇介绍一些常见RAID,及其在Linux上的软RAID创建方法. mdadm 创建软RAID mdadm -C -v /de ...

  8. vue父组件触发子组件方法

    比如应用场景是弹窗中的组件,想要点弹窗时更新该组件展示对应记录的的值 methods: { edit (record) { this.mdl = Object.assign({}, record) t ...

  9. Codeforces I. Inna and Nine(组合)

    题目描述: Inna and Nine time limit per test 1 second memory limit per test 256 megabytes input standard ...

  10. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...