import matplotlib.pyplot as plt
from scipy import sparse
import numpy as np
import matplotlib as mt
import pandas as pd
from IPython.display import display
from sklearn.datasets import load_iris
import sklearn as sk
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier iris=load_iris()
#print(iris)
X_train,X_test,y_train,y_test = train_test_split(iris['data'],iris['target'],random_state=0)
iris_dataframe = pd.DataFrame(X_train,columns=iris.feature_names)
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
# KNeighborsClassifier(algorithm='auto',leaf_size=30,metric='minkowski',
# metric_params=None,n_jobs=1,n_neighbors=1,p=2,weights='uniform')
X_new = np.array([[5,2.9,1,0.2]])
print("X_new.shape:{}".format(X_new.shape))
prediction = knn.predict(X_new)
print("Prediction X_new:{}".format(prediction))
print("prediction X_new belong to {}".format(iris['target_names'][prediction])) #评估模型
#计算精度方法1
print("test score1:{:.2f}".format(knn.score(X_test,y_test)))
#计算精度方法2
y_pred = knn.predict(X_test)
print("test score2:{:.2f}".format(np.mean(y_pred == y_test)))

输出:

Prediction X_new:[0]
prediction X_new belong to ['setosa']
test score1:0.97
test score2:0.97

 测试精度

knn的邻居设置会影响测试精度,举例说明:

import matplotlib.pyplot as plt
import mglearn
from scipy import sparse
import numpy as np
import matplotlib as mt
import pandas as pd
from IPython.display import display
from sklearn.datasets import load_breast_cancer
import sklearn as sk
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier cancer = load_breast_cancer()
X_train,X_test,y_train,y_test =train_test_split(cancer.data,cancer.target,stratify=cancer.target,random_state=66)
training_accuracy=[]
test_accuracy=[]
neighbors_settings = range(1,11)
for n_neighbors in neighbors_settings:
clf = KNeighborsClassifier(n_neighbors=n_neighbors)
clf.fit(X_train,y_train)
training_accuracy.append(clf.score(X_train,y_train))
test_accuracy.append(clf.score(X_test,y_test)) plt.plot(neighbors_settings,training_accuracy,label="training accuracy")
plt.plot(neighbors_settings,test_accuracy,label="test accuracy")
plt.xlabel("n_neighbors")
plt.ylabel("accuracy")
plt.legend()
plt.show()

可以看出,6是最优。

KNN算法的优点是简单可解释性强,

缺点是:

  • 样本大的时候性能不好
  • 特征多(几百个+)的时候效果不好
  • 稀疏数据集不适用

用KNN实现iris的4分类问题&测试精度的更多相关文章

  1. kNN(K-Nearest Neighbor)最近的分类规则

    KNN最近的规则,主要的应用领域是未知的鉴定,这一推断未知的哪一类,这样做是为了推断.基于欧几里得定理,已知推断未知什么样的特点和最亲密的事情特性: K最近的邻居(k-Nearest Neighbor ...

  2. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  3. kNN处理iris数据集-使用交叉验证方法确定最优 k 值

    基本流程: 1.计算测试实例到所有训练集实例的距离: 2.对所有的距离进行排序,找到k个最近的邻居: 3.对k个近邻对应的结果进行合并,再排序,返回出现次数最多的那个结果. 交叉验证: 对每一个k,使 ...

  4. knn原理及借助电影分类实现knn算法

    KNN最近邻算法原理 KNN英文全称K-nearst neighbor,中文名称为K近邻算法,它是由Cover和Hart在1968年提出来的 KNN算法原理: 1. 计算已知类别数据集中的点与当前点之 ...

  5. 85、使用TFLearn实现iris数据集的分类

    ''' Created on 2017年5月21日 @author: weizhen ''' #Tensorflow的另外一个高层封装TFLearn(集成在tf.contrib.learn里)对训练T ...

  6. 使用KNN对iris数据集进行分类——python

    filename='g:\data\iris.csv' lines=fr.readlines()Mat=zeros((len(lines),4))irisLabels=[]index=0for lin ...

  7. 数学建模:2.监督学习--分类分析- KNN最邻近分类算法

    1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分 ...

  8. 最邻近规则分类(K-Nearest Neighbor)KNN算法

     自写代码: # Author Chenglong Qian from numpy import * #科学计算模块 import operator #运算符模块 def createDaraSet( ...

  9. kNN(K-Nearest Neighbor)最邻近规则分类

    KNN最邻近规则,主要应用领域是对未知事物的识别,即推断未知事物属于哪一类,推断思想是,基于欧几里得定理,推断未知事物的特征和哪一类已知事物的的特征最接近: K近期邻(k-Nearest Neighb ...

随机推荐

  1. 01.Vue前端路由学习目标

    路由的基本概念与原理 vue-router的基本使用 vue-router嵌套路由 vue-router动态路由匹配 vue-router命名路由 vue-router编程式导航 基于vue-rout ...

  2. (java)Jsoup爬虫学习--获取智联招聘(老网站)的全国java职位信息,爬取10页

    Jsoup爬虫学习--获取智联招聘(老网站)的全国java职位信息,爬取10页,输出 职位名称*****公司名称*****职位月薪*****工作地点*****发布日期 import java.io.I ...

  3. ORM框架三种映射在Springboot上的使用

    ORM(对象/关系映射)是数据库层非常重要的一部分,有三种常用的映射关系 1.多对一 tbl_clazz clazz{ id name description grade_id charge_id } ...

  4. BCB key事件中判断Shift、Alt、Ctrl状态

    BCB key事件中判断Shift.Alt.Ctrl状态: 类似此事件中 void __fastcall TForm1::keydown(TObject *Sender, WORD &Key, ...

  5. 【微信小程序】如何获取用户绑定手机号

    用户调用wx.login()方法,获取登录用户凭证code wx.login({ success: function(res) { console.log('loginCode', res.code) ...

  6. pve 导入 ova

    匆忙记录 Proxmox includes qm importdisk as command. Extract your ova: tar -xvf *.ova Create a new VM wit ...

  7. Dns的作用

    DNS(Domain Name System,域名系统),万维网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串 DNS系统:通过 ...

  8. 简要描述Python的垃圾回收机制(garbage collection)

    这里能说的很多.你应该提到下面几个主要的点: Python在内存中存储了每个对象的引用计数(reference count).如果计数值变成0,那么相应的对象就会小时,分配给该对象的内存就会释放出来用 ...

  9. java代码拼写sql

    java后台    String zffwdm=map.get("zffwmc")==null?"":map.get("zffwmc"); ...

  10. spark-shell启动错误

    18/06/24 16:41:40 ERROR spark.SparkContext: Error initializing SparkContext.java.net.BindException: ...