用KNN实现iris的4分类问题&测试精度
import matplotlib.pyplot as plt
from scipy import sparse
import numpy as np
import matplotlib as mt
import pandas as pd
from IPython.display import display
from sklearn.datasets import load_iris
import sklearn as sk
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier iris=load_iris()
#print(iris)
X_train,X_test,y_train,y_test = train_test_split(iris['data'],iris['target'],random_state=0)
iris_dataframe = pd.DataFrame(X_train,columns=iris.feature_names)
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
# KNeighborsClassifier(algorithm='auto',leaf_size=30,metric='minkowski',
# metric_params=None,n_jobs=1,n_neighbors=1,p=2,weights='uniform')
X_new = np.array([[5,2.9,1,0.2]])
print("X_new.shape:{}".format(X_new.shape))
prediction = knn.predict(X_new)
print("Prediction X_new:{}".format(prediction))
print("prediction X_new belong to {}".format(iris['target_names'][prediction])) #评估模型
#计算精度方法1
print("test score1:{:.2f}".format(knn.score(X_test,y_test)))
#计算精度方法2
y_pred = knn.predict(X_test)
print("test score2:{:.2f}".format(np.mean(y_pred == y_test)))
输出:
Prediction X_new:[0]
prediction X_new belong to ['setosa']
test score1:0.97
test score2:0.97
测试精度
knn的邻居设置会影响测试精度,举例说明:
import matplotlib.pyplot as plt
import mglearn
from scipy import sparse
import numpy as np
import matplotlib as mt
import pandas as pd
from IPython.display import display
from sklearn.datasets import load_breast_cancer
import sklearn as sk
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier cancer = load_breast_cancer()
X_train,X_test,y_train,y_test =train_test_split(cancer.data,cancer.target,stratify=cancer.target,random_state=66)
training_accuracy=[]
test_accuracy=[]
neighbors_settings = range(1,11)
for n_neighbors in neighbors_settings:
clf = KNeighborsClassifier(n_neighbors=n_neighbors)
clf.fit(X_train,y_train)
training_accuracy.append(clf.score(X_train,y_train))
test_accuracy.append(clf.score(X_test,y_test)) plt.plot(neighbors_settings,training_accuracy,label="training accuracy")
plt.plot(neighbors_settings,test_accuracy,label="test accuracy")
plt.xlabel("n_neighbors")
plt.ylabel("accuracy")
plt.legend()
plt.show()
可以看出,6是最优。
KNN算法的优点是简单可解释性强,
缺点是:
- 样本大的时候性能不好
- 特征多(几百个+)的时候效果不好
- 稀疏数据集不适用
用KNN实现iris的4分类问题&测试精度的更多相关文章
- kNN(K-Nearest Neighbor)最近的分类规则
KNN最近的规则,主要的应用领域是未知的鉴定,这一推断未知的哪一类,这样做是为了推断.基于欧几里得定理,已知推断未知什么样的特点和最亲密的事情特性: K最近的邻居(k-Nearest Neighbor ...
- 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...
- kNN处理iris数据集-使用交叉验证方法确定最优 k 值
基本流程: 1.计算测试实例到所有训练集实例的距离: 2.对所有的距离进行排序,找到k个最近的邻居: 3.对k个近邻对应的结果进行合并,再排序,返回出现次数最多的那个结果. 交叉验证: 对每一个k,使 ...
- knn原理及借助电影分类实现knn算法
KNN最近邻算法原理 KNN英文全称K-nearst neighbor,中文名称为K近邻算法,它是由Cover和Hart在1968年提出来的 KNN算法原理: 1. 计算已知类别数据集中的点与当前点之 ...
- 85、使用TFLearn实现iris数据集的分类
''' Created on 2017年5月21日 @author: weizhen ''' #Tensorflow的另外一个高层封装TFLearn(集成在tf.contrib.learn里)对训练T ...
- 使用KNN对iris数据集进行分类——python
filename='g:\data\iris.csv' lines=fr.readlines()Mat=zeros((len(lines),4))irisLabels=[]index=0for lin ...
- 数学建模:2.监督学习--分类分析- KNN最邻近分类算法
1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分 ...
- 最邻近规则分类(K-Nearest Neighbor)KNN算法
自写代码: # Author Chenglong Qian from numpy import * #科学计算模块 import operator #运算符模块 def createDaraSet( ...
- kNN(K-Nearest Neighbor)最邻近规则分类
KNN最邻近规则,主要应用领域是对未知事物的识别,即推断未知事物属于哪一类,推断思想是,基于欧几里得定理,推断未知事物的特征和哪一类已知事物的的特征最接近: K近期邻(k-Nearest Neighb ...
随机推荐
- c# 数据类型转换
隐式转换 byte, short, int, long, fload, double等根据其顺序向后可以隐式自动完成类型的转换,隐式转移的前提是目标类型精度高于源类型,如:short隐式转换为int, ...
- PL/sql配置相关
可以安装oracle之后,打开PL/sql之后,自动找到oracle的路径以及数据库连接. 或者:安装oracle客户端,手动在PL/sql中配置oic以及oracle主目录的位置,并且配置好C: ...
- 团队协作editconfig与eslint
editconfig root = true [*] charset = utf-8 indent_style = space indent_size = 2 end_of_line = lf ins ...
- 洛谷-P2661 信息传递——有向图中的最小环
题意 给定一个 $n$ 个结点有向图,求其中最小环的大小.($n \leq 200000$). 分析 由于每条点出度都为1且满足传递性,可以用并查集做. 如果有一条从x到y的有向边,那么y就是x的父亲 ...
- 使用jquery结合ajax做下拉刷新页面,上拉加载页面,俗称分页
jquery结合iscroll.js做下拉刷新页面,上拉加载页面 先上代码,里面都有注释这就不一一说明了 <!DOCTYPE html> <html lang="en&qu ...
- 初学 Size Balanced Tree(bzoj3224 tyvj1728 普通平衡树)
SBT(Size Balance Tree), 即一种通过子树大小(size)保持平衡的BST SBT的基本性质是:每个节点的size大小必须大于等于其兄弟的儿子的size大小: 当我们插入或者删除一 ...
- Oracle row_number() over() 分析函数--取出最新数据
语法格式:row_number() over(partition by 分组列 order by 排序列 desc) 一个很简单的例子 1,先做好准备 create table test1( id v ...
- Oracle 分区表中本地索引和全局索引的适用场景
背景 分区表创建好了之后,如果需要最大化分区表的性能就需要结合索引的使用,分区表有两种索引:本地索引和全局索引.既然存在着两种的索引类型,相信存在即合理.既然存在就会有存在的原因,也就是在特定的场景中 ...
- Solution
小五的游戏 小碎骨的子集 芙兰朵露的框框 ⑨要求和
- 描述yeild作用
保存当前运行状态(断点),然后暂停执行,即将函数挂起 将yeild关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用,当使用next().send()函数让函数从断点处继续执行 ...