Python数据挖掘——数据预处理

  • 数据预处理

    • 数据质量

      • 准确性、完整性、一致性、时效性、可信性、可解释性

    • 数据预处理的主要任务

      • 数据清理

      • 数据集成

      • 数据归约

        • 维归约

        • 数值归约

      • 数据变换

        • 规范化

        • 数据离散化

        • 概念分层产生

  • 数据清理(试图填充缺失的值,光滑噪声并识别离群点,纠正数据的不一致)

    • 缺失值

      • 忽略元组

      • 人工填写缺失值

      • 使用一个全局常量填充缺失值

      • 使用属性的中心度量(均值/中位数)填充缺失值

      • 使用与给定元组属于同一类的所有样本的均值/中位数

      • 使用最可能的值 填充缺失值

      • 注:某些情况,缺失值并不代表错误

    • 噪声数据(噪声是被测量的变量的随机误差或方差)

      • 分箱(通过考察数据的近邻,来光滑有序数据值)

        • 用箱均值

        • 用箱中位数

        • 用箱边界

      • 回归

      • 离群点分析(通过聚类来检测离群点)

    • 数据清理化为一个过程

      • 首先进行偏差检测,还要防止字段过载

        • 唯一性规则

        • 连续性规则

        • 空值规则

      • 偏差检测商业工具

        • 数据清洗工具

        • 数据审计工具

      • 数据迁移工具

        • EIL工具

  • 数据集成

    • 实体识别问题

    • 冗余和相关分析

    • 元组重复

    • 数据值冲突的检测与处理

  • 数据归约

    • 数据变换与数据离散化

Python数据挖掘——数据预处理的更多相关文章

  1. Python数据挖掘——数据概述

    Python数据挖掘——数据概述 数据集由数据对象组成: 数据的基本统计描述 中心趋势度量 均值 中位数 众数 中列数 数据集的最大值和最小值的平均 度量数据分布 极差 最大值与最小值的差 四分位数 ...

  2. Python做数据预处理

    在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索性分析之后要先进行一系列的数据预处理步骤.因为拿到的原始数据存在不完整.不一致. ...

  3. 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型

    from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...

  4. 吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型

    from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_Va ...

  5. 吴裕雄 python 机器学习——数据预处理正则化Normalizer模型

    from sklearn.preprocessing import Normalizer #数据预处理正则化Normalizer模型 def test_Normalizer(): X=[[1,2,3, ...

  6. 吴裕雄 python 机器学习——数据预处理标准化MaxAbsScaler模型

    from sklearn.preprocessing import MaxAbsScaler #数据预处理标准化MaxAbsScaler模型 def test_MaxAbsScaler(): X=[[ ...

  7. 吴裕雄 python 机器学习——数据预处理标准化StandardScaler模型

    from sklearn.preprocessing import StandardScaler #数据预处理标准化StandardScaler模型 def test_StandardScaler() ...

  8. 吴裕雄 python 机器学习——数据预处理标准化MinMaxScaler模型

    from sklearn.preprocessing import MinMaxScaler #数据预处理标准化MinMaxScaler模型 def test_MinMaxScaler(): X=[[ ...

  9. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

随机推荐

  1. 结构之美——优先队列基本结构(四)——二叉堆、d堆、左式堆、斜堆

    实现优先队列结构主要是通过堆完成,主要有:二叉堆.d堆.左式堆.斜堆.二项堆.斐波那契堆.pairing 堆等. 1. 二叉堆 1.1. 定义 完全二叉树,根最小. 存储时使用层序. 1.2. 操作 ...

  2. 关于Oracle的认识

    一.Oracle认识: 1.安装时的全局数据库Orcl可以使用吗?可以的 2.Oracle相关服务: 3.数据库与用户,表空间的关系“ 4.切换数据库 5.关于命令:sqlplus 6\

  3. iOS-截取TableView生成图片

    先看一下实例效果: 如果所示,这是一个在APP中截图,并调起微信客户端,发送给好友的例子,图片就是一个tableView的截图. 先实现一个小例子,如果tableVIew里面的内容,没有超过当前屏幕显 ...

  4. HTML5--Table

    1.先给大加看下效果图,有点干劲 2.编写的代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...

  5. 一个数据仓库时代开始--Hive

    一.什么是 Apache Hive? Apache Hive 是一个基于 Hadoop Haused 构建的开源数据仓库系统,我们使用它来查询和分析存储在 Hadoop 文件中的大型数据集.此外,通过 ...

  6. 使用CURL实现GET和POST方式请求

    /** 使用curl方式实现get或post请求@param $url 请求的url地址@param $data 发送的post数据 如果为空则为get方式请求return 请求后获取到的数据 */f ...

  7. Kafka解惑之时间轮 (TimingWheel)

    Kafka中存在大量的延迟操作,比如延迟生产.延迟拉取以及延迟删除等.Kafka并没有使用JDK自带的Timer或者DelayQueue来实现延迟的功能,而是基于时间轮自定义了一个用于实现延迟功能的定 ...

  8. BurpSuite—-Scanner模块(漏洞扫描)

    一.简介 Burp Scanner 是一个进行自动发现 web 应用程序的安全漏洞的工具.它是为渗透测试人员设计的,并且它和你现有的手动执行进行的 web 应用程序半自动渗透测试的技术方法很相似. 使 ...

  9. 20155212Arrays和String测试_MySort

    Arrays和String单元测试 在IDEA中以TDD的方式对String类和Arrays类进行学习 测试相关方法的正常,错误和边界情况 String类 charAt split Arrays类 s ...

  10. 20155233 《Java程序设计》 第十一周课堂练习总结

    20155233 <Java程序设计> 第十一周课堂练习总结 测试题目 1.修改教材P74 一行代码 NineNineTable.java, 让执行结果是个三角形: 提交在IDEA或命令行 ...