Frogger

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
 
这道题的题意不好懂。。。
重点理解下面一段:
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 
由1到2存在路经p1,p2,...,pm。路径pi中的“longest jump”为di,则最终答案为min(d1,d2,...,dm)
AC Code:
 #include <iostream>
#include <algorithm>
#include <deque>
#include <cstdio>
#include <cstring>
#include <cmath> using namespace std; const int sz = ;
const double inf = 10.0e8;
double d[sz][sz], x[sz], y[sz];
int n; void get_dist(int i, int j)
{
d[i][j] = d[j][i] = sqrt((x[i] - x[j]) * (x[i] - x[j]) +
(y[i] - y[j]) * (y[i] - y[j]));
} void floyd()
{
for(int k = ; k <= n; k++){
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
d[i][j] = min(d[i][j], max(d[i][k], d[k][j]));
}
}
}
} int main()
{
int ca = ;
while(scanf("%d", &n) && n){
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
d[i][j] = inf;
}
d[i][i] = 0.0;
}
for(int i = ; i <= n; i++){
scanf("%lf %lf", x + i, y + i);
for(int j = i - ; j > ; j--){
get_dist(i, j);
}
}
floyd();
printf("Scenario #%d\nFrog Distance = %.3lf\n\n", ca++, d[][]);
}
return ;
}
 

Frogger(floyd变形)的更多相关文章

  1. POJ2253——Frogger(Floyd变形)

    Frogger DescriptionFreddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fi ...

  2. UVA10048 Audiophobia[Floyd变形]

    UVA - 10048 Audiophobia Consider yourself lucky! Consider yourself lucky to be still breathing and h ...

  3. poj 2253 Frogger(floyd变形)

    题目链接:http://poj.org/problem?id=1797 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路 ...

  4. hdu 1596(Floyd 变形)

    http://acm.hdu.edu.cn/showproblem.php?pid=1596 find the safest road Time Limit: 10000/5000 MS (Java/ ...

  5. hdu 1217 (Floyd变形)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1217 Arbitrage Time Limit: 2000/1000 MS (Java/Others)   ...

  6. poj2253 Frogger(Floyd)

    题目链接 http://poj.org/problem?id=2253 题意 给出青蛙A,B和若干石头的坐标,现在青蛙A要跳到青蛙B所在的石头上,求出所有路径中最远那一跳的最小值. 思路 Floyd算 ...

  7. POJ 2253 Frogger Floyd

    原题链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  8. UVa 10048 (Floyd变形) Audiophobia

    题意: 给一个带权无向图,和一些询问,每次询问两个点之间最大权的最小路径. 分析: 紫书上的题解是错误的,应该是把原算法中的加号变成max即可.但推理过程还是类似的,如果理解了Floyd算法的话,这个 ...

  9. find the mincost route(floyd变形 无向图最小环)

    Time Limit: 1000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

随机推荐

  1. 用distinct在MySQL中查询多条不重复记录值[转]

    在使用mysql时,有时需要查询出某个字段不重复的记录,虽然mysql提供有distinct这个关键字来过滤掉多余的重复记录只保留一条,但往往只用它来返回不重复记录的条数,而不是用它来返回不重记录的所 ...

  2. Kafka重复消费和丢失数据研究

    Kafka重复消费原因 底层根本原因:已经消费了数据,但是offset没提交. 原因1:强行kill线程,导致消费后的数据,offset没有提交. 原因2:设置offset为自动提交,关闭kafka时 ...

  3. paip.语义相关是否可在 哈米 的语义分析中应用

    paip.语义相关是否可在 哈米 的语义分析中应用 作者Attilax  艾龙,  EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http://blog.csdn. ...

  4. Atitit..文件上传组件选型and最佳实践总结(3)----断点续传控件的实现

    Atitit..文件上传组件选型and最佳实践总结(3)----断点续传控件的实现 1. 实现思路:::元插件,元设置... 1 2. 实现流程downzip,unzip,exec 1 3. Zip  ...

  5. beego中orm关联查询使用解析

    这两天在学习beego框架,之前学习的时候遗漏了很多东西,比如orm.缓存.应用监控.模板处理等,这里将通过实例记录下如何使用beego自带的orm进行关联查询操作. 首先说明下,beego的orm有 ...

  6. mac下mysql数据库的配置

    这里记录一下. 之前在mac下使用brew install mysql安装,但是安装完成后发现密码不好修改,上网搜了下发现mac下使用命令行安装mysql确实存在很多问题,这一点确实远不如Ubuntu ...

  7. WPF面板布局介绍Grid、StackPanel、DockPanel、WrapPanel

    回顾 上一篇,我们介绍了基本控件及控件的重要属性和用法,我们本篇详细介绍WPF中的几种布局容器及每种布局容器的使用场景,当 然这些都是本人在实际项目中的使用经验,可能还存在错误之处,还请大家指出. 本 ...

  8. Spring框架下的 “接口调用、MVC请求” 调用参数、返回值、耗时信息输出

    主要拦截前端或后天的请求,打印请求方法参数.返回值.耗时.异常的日志.方便开发调试,能很快定位到问题出现在哪个方法中. 前端请求拦截,mvc的拦截器 import java.util.Date; im ...

  9. C语言:stat,fstat和lstat函数

    这三个函数的功能是一致的,都用于获取文件相关信息,但应用于不同的文件对象.对于函数中给出pathname参数,stat函数返回与此命名文件有关的信息结构,fstat函数获取已在描述符fields上打开 ...

  10. activemq安全设置 设置admin的用户名和密码

    ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到 <bean id="securityConstraint" class="o ...