这个题一看就是为后缀家族设计的

我们看到我们要求的这个柿子

\[\sum_{i=1}^n\sum_{j=i+1}^nT_i+T_j-2\times lcp(T_i,T_j)
\]

显然的是前面的那些东西是个定值

就是保证每一个长度都会被其他长度算到,也就是算到\(n-1\)次

于是把前面那些东西拿出来就是

\[\frac{(n+1)(n-1)n}{2}
\]

之后再看后面那些东西

所有后缀的\(lcp\)的长度?

先来考虑一下如何求两个后缀的\(lcp\)

哈希+二分啊\(SA\)啊

对于后缀\(i,j\),他们的\(lcp\)长度就是\(min(heighht[rk[i]+1]...height[rk[j]])\)

于是现在的问题转化为求出\(height\)数组所有子区间的最小值的和

我们可以考虑一个动态往序列末尾加数的过程

也就是我们往末尾加一个数都会和之前所有的数形成一个新的区间

考虑快速算出这些区间的最小值的和

我们可以对每一个数存储一个\(a_i\),表示\(i\)到当前序列末尾的最小值是多少

我们每次加入一个数可以对更新一下所有的\(a_i\),把所有比当前加入的数大的\(a_i\)变成当前数就好了

这不就\(T\)了吗

我们发现我们只需要求出所有\(a_i\)的和,并不需要关心这个\(i\)来自哪里,于是我们可以把相等的\(a_i\)放在一起计算,也就是每次新加入一个数就暴力扫一遍把那些比当前加入数大的合并到一个\(a_i\)里

看起来复杂度并不科学,但是最坏情况下就相当于是一个线段树的复杂度了,\(O(n)\)的,跑的还挺快的

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 500005
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define pt putchar(1)
inline int read()
{
char c=getchar();int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int n,m,top;
LL ans=0,sum=0;
char S[maxn];
int tax[maxn],sa[maxn],rk[maxn],tp[maxn],height[maxn];
int L[maxn],R[maxn],st[maxn];
int a[maxn],cnt[maxn];
LL pre[maxn];
inline void qsort()
{
for(re int i=0;i<=m;i++) tax[i]=0;
for(re int i=1;i<=n;i++) tax[rk[i]]++;
for(re int i=1;i<=m;i++) tax[i]+=tax[i-1];
for(re int i=n;i;--i) sa[tax[rk[tp[i]]]--]=tp[i];
}
int main()
{
scanf("%s",S+1);
n=strlen(S+1);
m=75;
for(re int i=1;i<=n;i++) rk[i]=S[i]-'a'+1,tp[i]=i;
qsort();
for(re int w=1,p=0;p<n;m=p,w<<=1)
{
p=0;
for(re int i=1;i<=w;i++) tp[++p]=n-w+i;
for(re int i=1;i<=n;i++) if(sa[i]>w) tp[++p]=sa[i]-w;
qsort();
for(re int i=1;i<=n;i++) std::swap(tp[i],rk[i]);
rk[sa[1]]=p=1;
for(re int i=2;i<=n;i++) rk[sa[i]]=(tp[sa[i-1]]==tp[sa[i]]&&tp[sa[i-1]+w]==tp[sa[i]+w])?p:++p;
}
int k=0;
for(re int i=1;i<=n;i++)
{
if(k) --k;
int j=sa[rk[i]-1];
while(S[i+k]==S[j+k]) ++k;
height[rk[i]]=k;
}
ans+=height[2];
a[1]=ans;cnt[1]=1,sum=ans;
top=1;
for(re int i=3;i<=n;i++)
{
int now=1;
while(top&&height[i]<=a[top])
now+=cnt[top],sum-=a[top]*cnt[top],top--;
cnt[++top]=now;
a[top]=height[i];
sum+=cnt[top]*a[top];
ans+=sum;
}
printf("%lld\n",(LL)(n-1)*(LL)(n+1)*(LL)n/2ll-2ll*ans);
return 0;
}

【[AHOI2013]差异】的更多相关文章

  1. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  2. bzoj 3238 Ahoi2013 差异

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2357  Solved: 1067[Submit][Status ...

  3. BZOJ 3238: [Ahoi2013]差异 [后缀自动机]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status ...

  4. BZOJ_3238_[Ahoi2013]差异_后缀自动机

    BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...

  5. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  6. 【LG4248】[AHOI2013]差异

    [LG4248][AHOI2013]差异 题面 洛谷 题解 后缀数组版做法戳我 我们将原串\(reverse\),根据后缀自动机的性质,两个后缀的\(lcp\)一定是我们在反串后两个前缀的\(lca\ ...

  7. 【BZOJ3238】[AHOI2013]差异

    [BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...

  8. P4248 [AHOI2013]差异 解题报告

    P4248 [AHOI2013]差异 题目描述 给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\displaystyle \s ...

  9. 【BZOJ 3238】 3238: [Ahoi2013]差异(SAM)

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3047  Solved: 1375 Description In ...

  10. bzoj 3238: [Ahoi2013]差异 -- 后缀数组

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...

随机推荐

  1. Java基本数据类型总结(转载)

    Java基本数据类型总结 基本类型,或者叫做内置类型,是JAVA中不同于类的特殊类型.它们是我们编程中使用最频繁的类型.java是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变量 ...

  2. LDA算法学习(Matlab实现)

    LDA算法 对于两类问题的LDA(Matlab实现) function [ W] = FisherLDA(w1,w2) %W最大特征值对应的特征向量 %w1 第一类样本 %w2 第二类样本 %第一步: ...

  3. Claim-Based Identity for Windows: Technologies and Scenarios

    Claim-Based Identity for Windows: Technologies and Scenarios Active Diretory Federation Services 2.0 ...

  4. 当堆遇到STL 代码焕发光芒

    来自度娘的释义,堆的含义大概是这样的: 感性理解: 堆(英语:heap)是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.堆总是满足下列性质: 堆中某个节点的值总是不大于 ...

  5. 【JavaFx教程】第一部分:Scene Builder

    第一部分的主题 开始了解 JavaFX . 创建并运行一个 JavaFX 项目. 使用 Scene Builder 来设计用户界面. 使用 模型 - 视图 - 控制器(MVC)模式 构造基础的应用. ...

  6. PHP trick(代码审计关注点)

    随着代码安全的普及,越来越多的开发人员知道了如何防御sqli.xss等与语言无关的漏洞,但是对于和开发语言本身相关的一些漏洞和缺陷却知之甚少,于是这些点也就是我们在Code audit的时候的重点关注 ...

  7. 31:字符串p型编码

    31:字符串p型编码 查看 提交 统计 提问 总时间限制:  1000ms 内存限制:  65536kB 描述 给定一个完全由数字字符('0','1','2',…,'9')构成的字符串str,请写出s ...

  8. 【读书笔记】iOS-网络-HTTP-请求内容

    一,GET方法. 从服务器获取一段内容,用HTTP术语来说就是实体.GET请求通常不包含请求体,不过也是可以包含的.有些网络缓存设施只会缓存GET响应.GET请求通常不会导致服务器端的数据变化. 二, ...

  9. JavaScript 数组复制的方法

    1.循环 2.Array.from(arr) 3.let arr2 = [...arr]

  10. Css 基础知识(一)

    1.Css概念 CSS 指层叠样式表 (Cascading Style Sheets)(级联样式表),Css是用来美化html标签的,相当于页面化妆. ◆样式表书写位置 2. 选择器 2.1.写法 选 ...