题目链接:http://poj.org/problem?id=2398

Time Limit: 1000MS Memory Limit: 65536K

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

与POJ 2318几乎一模一样的题。

POJ 2318的题解:http://www.cnblogs.com/dilthey/p/7767218.html

由于本题输入cardboard的时候是乱序,所以在二分前需要sort一下;另外输出的方式和2318不太一样,改一下即可。

AC代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#define MAX 5005
#define M_PI 3.14159265358979323846 //POJ的math头文件好像没有这个定义
using namespace std; const double eps = 1e-; struct Point{
double x,y;
Point(double tx=,double ty=):x(tx),y(ty){}
};
typedef Point Vctor; Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);}
Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);}
Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);}
Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);}
bool operator < (Point A,Point B){return A.x < B.x || (A.x == B.x && A.y < B.y);} struct Line{
Point p;
Vctor v;
Line(Point p=Point(0,0),Vctor v=Vctor(,)):p(p),v(v){}
Point point(double t){return p + v*t;} //获得直线上的距离p点t个单位长度的点
}; double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;} int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return (x<)?(-):();
}
bool operator == (Point A,Point B){return dcmp(A.x-B.x)== && dcmp(A.y-B.y)==;} int n,m;
Point upper_left,lower_right;
Line x_axis;//下边界
Line cardboard[MAX];//隔板
Point toy;
int area[MAX],cnt[MAX];//记录每个区域的 int Left_of_Line(Line l,Point p)
{
if(Cross(l.v,p-l.p)>) return ;//左边
else return ;
}
int where(Point toy)
{
int l=,r=n+;
while(r-l>)
{
int mid=(l+r)/;
if(Left_of_Line(cardboard[mid],toy)) r=mid;
else l=mid;
}
return l;
} bool cmp(Line a,Line b)
{
if(a.p==b.p) return (a.p+a.v)<(b.p+b.v);
else return a.p<b.p;
}
int main()
{
while(scanf("%d",&n) && n!=)
{
scanf("%d%lf%lf%lf%lf",&m,&upper_left.x,&upper_left.y,&lower_right.x,&lower_right.y); x_axis=Line(lower_right,Vctor(-,));
cardboard[]=Line(Point(upper_left.x,lower_right.y),Vctor(,)), cardboard[n+]=Line(lower_right,Vctor(,)); Point U=Point(,upper_left.y),L=Point(,lower_right.y);
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&U.x,&L.x);
cardboard[i]=Line(L,U-L);
}
sort(cardboard+,cardboard+n+,cmp); memset(area,,sizeof(area));
for(int i=;i<=m;i++)
{
scanf("%lf%lf",&toy.x,&toy.y);
area[where(toy)]++;
}
memset(cnt,,sizeof(cnt));
for(int i=;i<=n;i++) cnt[area[i]]++;
printf("Box\n");
for(int i=;i<=m;i++)
{
if(cnt[i]==) continue;
printf("%d: %d\n",i,cnt[i]);
}
}
}

POJ 2398 - Toy Storage - [计算几何基础题][同POJ2318]的更多相关文章

  1. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  2. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  3. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

  4. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  5. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  6. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  7. poj 2398 Toy Storage(计算几何 点线关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4588   Accepted: 2718 Descr ...

  8. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  9. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

随机推荐

  1. JQuery Mobile 简单入门引导

    看了慕课网的jqm视频(http://www.imooc.com/learn/207),觉的不错,简单截几个图,做一下备忘:

  2. Shiro集成Spring

    本篇博客主要讲述的是两者的集成.不涉及到各自的详细细节和功能. 因为官方给出的文档不够具体,对新手而言通过官方文档还不可以非常快的搭建出SpringShiro的webproject.本博客将通过实际的 ...

  3. 8 -- 深入使用Spring -- 8... Spring整合Hibernate

    8.8 Spring整合Hibernate 8.8.1 Spring提供的DAO支持 8.8.2 管理Hibernate的SessionFactory 8.8.3 实现DAO组件的基类 8.8.4 传 ...

  4. /usr/bin/ld: cannot find -lxxx 的解决办法

    /usr/bin/ld: cannot find -lxxx 的解决办法 在软件编译过程中,经常会碰到类似这样的编译错误: /usr/bin/ld: cannot find -lhdf5 这表示找不到 ...

  5. 【代码审计】XIAOCMS_存在任意文件删除漏洞分析

      0x00 环境准备 XIAOCMS官网: http://www.xiaocms.com/ 网站源码版本:XiaoCms (发布时间:2014-12-29) 程序源码下载:http://www.xi ...

  6. Nginx(十二)-- Nginx+keepalived实现高可用

    1.前提 两台Linux服务器,IP分别为192.168.80.128 和 192.168.80.129,都安装Nginx和keepalived,并启动. 2.配置双机热备 1.将192.168.80 ...

  7. 3dmax导出模型使用相对路径读取纹理贴图

    Shift+T快捷键打开“资源跟踪”窗口

  8. 编写java的时候出现“编码GBK的不可映射字符”

    今天在编写文件的时候,使用 javac ***.java 但是java文件里面会出现一些中文的信息,So:会报错 方法: 加参数-encoding UTF-8 例如:javac -encodig UT ...

  9. WP8.1学习系列(第九章)——透视Pivot开发指南

    Windows Phone 8 的 Pivot 控件 2014/6/18 适用于:Windows Phone 8 和 Windows Phone Silverlight 8.1 | Windows P ...

  10. TNS-12532: TNS:invalid argument,Oracle的报错信息太让人无语

    TNS-12532: TNS:invalid argument,Oracle的报错信息太让人无语 现象: Tnsping报错: [oracle@unicomGZ01 admin]$ ../../bin ...