背景:

我遇到一个问题,要计算140万商品的杰卡德相似度。如果直接要直接两两计算的话,这计算量根本算不了,而且也没必要。

分析:

在这些商品中很多商品的相似度并不高,也就是说其中达到相似度阈值的商品只占这些商品组合的一小部分。针对这种情况,首先想到的是按照类别,或者商品品牌进行计算,只计算同类别或者同品牌下的相似品。

但是实际执行效果并不理想,分析原因可能有以下两点。

一、不同类别下的商品数目极不均衡,一些类别比较少的只有十几个,而一些类别下的商品数量极大,可能有十万以上。

二、如果按品牌划分则推荐效果不理想,只能推荐该品牌下的商品,而且同样存在问题一中的情况,即不同品牌的商品数量差别很大。

解决方案:

找到的一种解决方案是使用minhash加一些近似估计的处理。最后达到的效果是在满足一定的准确率的情况下,获得杰卡德距离大于一定阈值的所有商品组合,然后在对这些商品对计算真正的距离。比如我们要求获取杰卡德距离大于0.2的所有商品对,而且准确率不低于99%

先介绍minHash

minhash是局部敏感hash的一种。局部敏感哈希是将原始数据去一个摘要,该摘要还能够表示原始数据之间的相似性,例如相似性大于一定阈值的话,Hash值相等。

minHash要实现这么一种Hash,对于原始集合Set1和Set2的hash,hmin(Set1)=hmin(Set2)的概率p 等于Set1与Set2的杰卡德相似度。

下图是维基百科上的介绍。

接下来介绍算法的两种实现:

一种是使用多个hash函数,这种比较简单。具体过程为,使用K个Hash函数,然后每个Hash函数分别对集合A和集合B计算hmin(SetA) ,hmin(SetB)。然后计算SetA的K个Hash min 和SetB的K个Hash值的交集,假设交集有Y个。则杰卡德相似度的值为Y/K。

第二种是使用一个Hash函数:

使用多个hash函数的计算代价太大(每个都求一次最小值确实费劲)。我们使用一个Hash函数分别求出SetA和SetB的前K小的元素。SetA的前K小的作为A的签名,SetB的前K小的作为B的签名。然后计算集合X:

                                       X = h(k)(h(k)(A) ∪ h(k)(B)) = h(k)(A ∪ B)

根据之前说过的该Hash函数要求的性质X等价于求得A和B的并集的前K小元素的集合。

然后在求一个子集Y,令Y等于:

Y = X ∩ h(k)(A) ∩ h(k)(B)

集合A和集合B的杰卡德距离的估计值是:|Y|/X

应用:

1、MinHash的应用应该是对要计算杰卡德距离的两个集合进行降维,然后通过集合的摘要计算杰卡德相似度。

2、还有一种是通过minhash相等的概率等于杰卡德相似度,来优化大量集合之间的杰卡德相似度的计算。

参考资料:

http://www.cnblogs.com/bourneli/archive/2013/04/04/2999767.html

https://en.wikipedia.org/wiki/MinHash

Minhash 算法 及其应用的更多相关文章

  1. MinHash算法

    MinHash是用于快速检测两个集合的相似性的方法.改方法由Andrei Broder(1997)发明,并最初用于搜索引擎AltaVista中来检测重复的网页的算法.它同样可以用于推荐系统和大规模文档 ...

  2. 文本去重之MinHash算法

    1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页.它也可以应用 ...

  3. MinHash算法-复杂度待整理

    1MinHash简介 传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法.传统hash算法产生的两个签名,如果相等,说明原始内容在一定概率下是相等的:如果不 ...

  4. 文本去重之MinHash算法——就是多个hash函数对items计算特征值,然后取最小的计算相似度

    来源:http://my.oschina.net/pathenon/blog/65210 1.概述     跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度.Mi ...

  5. 文本相似性计算--MinHash和LSH算法

    给定N个集合,从中找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合.那么可以十分精确的找到每一对相似的集合,但是时间复杂度是O(n2).此外,假如,N个集合中只有少数几对集合相似,绝大多数集 ...

  6. minhash

    minhash是一种基于jaccard index 相似度的算法.属于LSH(Location Sensitive Hash)家族中的一员. jaccard index :有两个集合A={a , b ...

  7. 海量数据集利用Minhash寻找相似的集合【推荐优化】

    MinHash 首先它是一种基于 Jaccard Index 相似度的算法,也是一种 LSH 的降维的方法,应用于大数据集的相似度检索.推荐系统.下边按我的理解介绍下MinHash 问题背景 给出N个 ...

  8. 利用Minhash和LSH寻找相似的集合(转)

    问题背景 给出N个集合,找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合.那么可以十分精确的找到每一对相似的集合,但是时间复杂度是O(n2).当N比较小时,比如K级,此算法可以在接受的时间范 ...

  9. 位姿检索PoseRecognition:LSH算法.p稳定哈希

    位姿检索使用了LSH方法,而不使用PNP方法,是有一定的来由的.主要的工作会转移到特征提取和检索的算法上面来,有得必有失.因此,放弃了解析的方法之后,又放弃了优化的方法,最后陷入了检索的汪洋大海. 0 ...

随机推荐

  1. xmapp开启https

    在开发微信小程序的时候我们需要开启https本地测试,以下我们说明使用xmapp如何开启https访问 1. php中开启ssl 在php的配置文件中把openssl前面的注释去掉, 大概在配置文件的 ...

  2. flume sink两种类型 file_rool 自定义sing com.mycomm.MySink even if there is only one event, the event has to be sent in an array

    mkdir /data/UnifiedLog/; cd /data/UnifiedLog/; wget http://mirror.bit.edu.cn/apache/flume/1.8.0/apac ...

  3. Java 之综合练习

    // 练习一: 写出程序结果 interface A{} class B implements A { public String func() { return "func"; ...

  4. python基于yield实现协程

    def f1(): print(11) yield print(22) yield print(33) def f2(): print(55) yield print(66) yield print( ...

  5. threading模块、ThreadLocal

    一.threading模块 1.线程对象的创建 1.1 Thread类直接创建 import threading import time def countNum(n): # 定义某个线程要运行的函数 ...

  6. C# OpenFileDialog 的使用方法

    OpenFileDialog openFileDialog = new OpenFileDialog(); //打开的文件选择对话框上的标题 openFileDialog.Title = " ...

  7. 001-project基本使用

    一.概述 Project工具一般用来管理一个项目,制定项目的执行计划.这个项目可以是临时性的工作,可以是IT项目.工程类项目,也可是结婚这一事情,项目的特点是产生唯一性的成果或最终结果. 项目的三要素 ...

  8. golang的多协程实践

    go语言以优异的并发特性而闻名,刚好手上有个小项目比较适合. 项目背景: 公司播控平台的数据存储包括MySQL和ElasticSearch(ES)两个部分,编辑.运营的数据首先保存在MySQL中,为了 ...

  9. this的思考

    问题:JS中为什么要用this? 回答:因为this采用隐式“传递”一个对象的引用,所以可以将API设计得更加简洁和可复用 问题:JS中的this是什么? 背景:this是在运行时绑定的,this的上 ...

  10. React官网首页demo(单文件实现版)

    本博客实现React官网首页上展示的demo, 为了方便直接采用单文件的形式, 如果想完整集成 在自己的项目中, 可以参考React官网的安装指南, 安装Create React App. hello ...