回归树:使用平方误差最小准则

训练集为:D={(x1,y1), (x2,y2), …, (xn,yn)}。

输出Y为连续变量,将输入划分为M个区域,分别为R1,R2,…,RM,每个区域的输出值分别为:c1,c2,…,cm则回归树模型可表示为:

则平方误差为:

假如使用特征j的取值s来将输入空间划分为两个区域,分别为:

我们需要最小化损失函数,即:

  其中c1,c2分别为R1,R2区间内的输出平均值。(此处与统计学习课本上的公式有所不同,在课本中里面的c1,c2都需要取最小值,但是,在确定的区间中,当c1,c2取区间输出值的平均值时其平方会达到最小,为简单起见,故而在此直接使用区间的输出均值。)

  为了使平方误差最小,我们需要依次对每个特征的每个取值进行遍历,计算出当前每一个可能的切分点的误差,最后选择切分误差最小的点将输入空间切分为两个部分,然后递归上述步骤,直到切分结束。此方法切分的树称为最小二乘回归树。

最小二乘回归树生成算法:

1)依次遍历每个特征j,以及该特征的每个取值s,计算每个切分点(j,s)的损失函数,选择损失函数最小的切分点。

2)使用上步得到的切分点将当前的输入空间划分为两个部分

3)然后将被划分后的两个部分再次计算切分点,依次类推,直到不能继续划分。

4)最后将输入空间划分为M个区域R1,R2,…,RM,生成的决策树为:

其中cm为所在区域的输出值的平均。

  总结:此方法的复杂度较高,尤其在每次寻找切分点时,需要遍历当前所有特征的所有可能取值,假如总共有F个特征,每个特征有N个取值,生成的决策树有S个内部节点,则该算法的时间复杂度为:O(F*N*S)

cart回归树算法过程的更多相关文章

  1. CART回归树

    决策树算法原理(ID3,C4.5) 决策树算法原理(CART分类树) 决策树的剪枝 CART回归树模型表达式: 其中,数据空间被划分为R1~Rm单元,每个单元有一个固定的输出值Cm.这样可以计算模型输 ...

  2. 大白话5分钟带你走进人工智能-第二十六节决策树系列之Cart回归树及其参数(5)

                                                    第二十六节决策树系列之Cart回归树及其参数(5) 上一节我们讲了不同的决策树对应的计算纯度的计算方法, ...

  3. 机器学习实战---决策树CART回归树实现

    机器学习实战---决策树CART简介及分类树实现 一:对比分类树 CART回归树和CART分类树的建立算法大部分是类似的,所以这里我们只讨论CART回归树和CART分类树的建立算法不同的地方.首先,我 ...

  4. 机器学习回顾篇(8):CART决策树算法

    1 引言 上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification and regression tree)决策树不仅能用于 ...

  5. Logistic回归计算过程的推导

    https://blog.csdn.net/ligang_csdn/article/details/53838743 https://blog.csdn.net/weixin_30014549/art ...

  6. Softmax回归推导过程

    http://www.cnblogs.com/Deep-Learning/p/7073744.html http://www.cnblogs.com/lutingting/p/4768882.html ...

  7. 决策树CART回归树——算法实现

    决策树模型 选择最好的特征和特征的值进行数据集划分 根据上面获得的结果创建决策树 根据测试数据进行剪枝(默认没有数据的树分支被剪掉) 对输入进行预测 模型树 import numpy as np de ...

  8. CART算法(转)

    来源:http://www.cnblogs.com/pinard/p/6053344.html 作者:刘建平Pinard 对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了 ...

  9. 决策树算法原理--good blog

    转载于:http://www.cnblogs.com/pinard/p/6050306.html (楼主总结的很好,就拿来主义了,不顾以后还是多像楼主学习) 决策树算法在机器学习中算是很经典的一个算法 ...

随机推荐

  1. mysqlslap工具测试mysql DB的性能

    mysqlslap的一个主要工作场景就是对数据库服务器做基准测试.     测试方法 1.测试工具:mysqlslap,mysqlslap是MySQL5.1.4之后自带的benchmark基准测试工具 ...

  2. WPF文件和文件夹的操作

    1.对文件的操作 private void button_chose_Click(object sender, RoutedEventArgs e) { var openFileDialog = ne ...

  3. WPF如何将数据库中的二进制图片数据显示在Image控件上

    首先在xaml文件里定义一个Image控件,取名为img MemoryStream stream = new MemoryStream(获得的数据库对象): BitMapImage bmp = new ...

  4. Qt快速入门学习笔记(基础篇)

    本文基于Qter开源社区论坛版主yafeilinux编写的<Qt快速入门系列教程目录>,网址:http://bbs.qter.org/forum.php?mod=viewthread&am ...

  5. BZOJ4835 遗忘之树

    点分树上的某个点和其某个子树在原树中的连接方式一般来说可以是由该点连向子树内任意一点,这样方案数即为所有子树大小之积.但有一种特殊情况是连接某点后导致编号最小的重心更换,只要去掉这种就行了,具体地可以 ...

  6. BZOJ2428:[HAOI2006]均分数据——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2428 https://www.luogu.org/problemnew/show/P2503 已知 ...

  7. UVA.122 Trees on the level(二叉树 BFS)

    UVA.122 Trees on the level(二叉树 BFS) 题意分析 给出节点的关系,按照层序遍历一次输出节点的值,若树不完整,则输出not complete 代码总览 #include ...

  8. lighttpd - 配置

    Lighttpd core 配置 connection.kbytes-per-second     限制每一个链接的速度etag.use-inode                   Etag使用i ...

  9. BUG:Open quote is expected for attribute "{1}" associated with an element type "id".

    BUG原因:Mybatis的xml文件中id缺少双引号: 正确的应该是:

  10. JNA的用法

    JNA(Java Native Access):建立在JNI之上的Java开源框架,SUN主导开发,用来调用C.C++代码,尤其是底层库文件(windows中叫dll文件,linux下是so[shar ...