https://datawhalechina.github.io/pms50/#/chapter6/chapter6

边缘直方图 (Marginal Histogram)

边缘直方图具有沿 X 和 Y 轴变量的直方图。 这用于可视化 X 和 Y 之间的关系以及单独的 X 和 Y 的单变量分布。 这种图经常用于探索性数据分析(EDA)。

导入所需要的库

# 导入numpy库
import numpy as np
# 导入pandas库
import pandas as pd
# 导入matplotlib库
import matplotlib as mpl
import matplotlib.pyplot as plt
# 导入seaborn库
import seaborn as sns
# 在jupyter notebook显示图像
%matplotlib inline

设定图像各种属性

large = 22; med = 16; small = 12
# 设置子图上的标题字体
params = {'axes.titlesize': large,
# 设置图例的字体
'legend.fontsize': med,
# 设置图像的画布
'figure.figsize': (16, 10),
# 设置标签的字体
'axes.labelsize': med,
# 设置x轴上的标尺的字体
'xtick.labelsize': med,
# 设置整个画布的标题字体
'ytick.labelsize': med,
'figure.titlesize': large}
# 更新默认属性
plt.rcParams.update(params)
# 设定整体风格
plt.style.use('seaborn-whitegrid')
# 设定整体背景风格
sns.set_style("white")

程序代码

# step1:导入数据

df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv")

# step2:创建子图对象与网格

    # 画布

fig = plt.figure(figsize = (16, 10),     # 画布大小_(16, 10)
dpi = 80, # 分辨率
facecolor = 'white') # 背景颜色,默认为白色
# 网格 grid = plt.GridSpec(4, # 行数
4, # 列数
hspace = 0.5, # 行与行之间的间隔
wspace = 0.2) # 列与列之间的间隔

# step3:明确子图的位置

    # 确定如图所示散点图的位置
ax_main = fig.add_subplot(grid[:-1, :-1])
# 确定如图所示右边直方图的位置
ax_right = fig.add_subplot(grid[:-1, -1], xticklabels = [], yticklabels = [])
# 确定如图所示最底下直方图的位置
ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels = [], yticklabels = [])

# step4:散点图

    # category__Category是pandas的一种数据类型
# astype__实现变量类型转换
# cat__获取分类变量的类别
# codes__按照类别编码
ax_main.scatter('displ', # 横坐标
'hwy', # 纵坐标
s = df.cty*4, # 设置点的尺寸
data = df, # 所使用的数据
c = df.manufacturer.astype('category').cat.codes, # 颜色类别
cmap = 'tab10', # 调色板
edgecolors = 'gray', # 边框颜色
linewidths = 0.5, # 线宽
alpha = 0.9) # 透明度

# step5:右边的直方图

ax_right.hist(df.hwy,                 # 需要绘图的变量
40, # 需要分为多少段
histtype = 'stepfilled', # 生成一个的线条轮廓
orientation = 'horizontal', # 方位__水平
color = 'deeppink') # 颜色__深粉色

# step6:底部的直方图

ax_bottom.hist(df.displ,                # 需要绘图的变量
40, # 需要分为多少段
histtype = 'stepfilled', # 生成一个的线条轮廓
orientation = 'vertical', # 方位__垂直
color = 'deeppink') # 颜色__深粉色
ax_bottom.invert_yaxis()

# step7:装饰图像

ax_main.set(title='Scatterplot with Histograms \n displ vs hwy',  # 设置标题
xlabel='displ', # 横坐标名称
ylabel='hwy') # 纵坐标名称
ax_main.title.set_fontsize(20) # 设置标题字体大小
# xaxis.label__x坐标轴的标题
# yaxis.label__y坐标轴的标题
# xticklabel__x坐标轴的标尺
# yticklabel__y坐标轴的标尺
# 遍历每一个对象并且修改其字体大小
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()):
item.set_fontsize(14) # 修改字体大小 xlabels = ax_main.get_xticks().tolist() # 将散点图上的x坐标轴上的标尺提取后转换为list(一位小数)
ax_main.set_xticklabels(xlabels) # 将xlabels中的数字设置为散点图上的坐标轴上的标尺
plt.show() # 显示图像

博文总结

matplotlib.pyplot.hist(x,bins=None,range=None, density=None, bottom=None, histtype='bar', align='mid', 
log=False, color=None, label=None, stacked=False, normed=None)

关键参数

x: 数据集,最终的直方图将对数据集进行统计
bins: 统计的区间分布
range: tuple, 显示的区间,range在没有给出bins时生效
density: bool,默认为false,显示的是频数统计结果,为True则显示频率统计结果,这里需要注意,频率统计结果=区间数目/(总数*区间宽度),和normed效果一致,官方推荐使用density
histtype: 可选{'bar', 'barstacked', 'step', 'stepfilled'}之一,默认为bar,推荐使用默认配置,step使用的是梯状,stepfilled则会对梯状内部进行填充,效果与bar类似
align: 可选{'left', 'mid', 'right'}之一,默认为'mid',控制柱状图的水平分布,left或者right,会有部分空白区域,推荐使用默认
log: bool,默认False,即y坐标轴是否选择指数刻度
stacked: bool,默认为False,是否为堆积状图

数据可视化实例(八): 边缘直方图(matplotlib,pandas)的更多相关文章

  1. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  2. 数据可视化实例(九): 边缘箱形图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter7/chapter7 边缘箱形图 (Marginal Boxplot) 边缘箱图与边缘直方图具有相似的用 ...

  3. 数据可视化实例(三): 散点图(pandas,matplotlib,numpy)

    关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和 ...

  4. 数据可视化实例(五): 气泡图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter2/chapter2 关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也 ...

  5. 数据可视化实例(十四):带标记的发散型棒棒糖图 (matplotlib,pandas)

    偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适 ...

  6. 数据可视化实例(十三): 发散型文本 (matplotlib,pandas)

    偏差 (Deviation) https://datawhalechina.github.io/pms50/#/chapter11/chapter11 发散型文本 (Diverging Texts) ...

  7. 数据可视化实例(十二): 发散型条形图 (matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter10/chapter10 如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么散型条 ...

  8. 数据可视化实例(十一): 矩阵图(matplotlib,pandas)

    矩阵图 https://datawhalechina.github.io/pms50/#/chapter9/chapter9 导入所需要的库 import numpy as np # 导入numpy库 ...

  9. 数据可视化实例(十七):包点图 (matplotlib,pandas)

    排序 (Ranking) 包点图 (Dot Plot) 包点图表传达了项目的排名顺序,并且由于它沿水平轴对齐,因此您可以更容易地看到点彼此之间的距离. https://datawhalechina.g ...

随机推荐

  1. Mini Linux的制作过程

  2. 最全的DOM事件笔记

    1. DOM事件模型 DOM是微软和网景发生"浏览器大战"时期留下的产物,后来被"W3C"进行标准化,标准化一代代升级与改进,目前已经推行至第四代,即 leve ...

  3. python生成批量格式化字符串

    在学习tensorflow管道化有关操作时,有一个操作是先生成一个文件名队列.在书上使用了这样的代码: filenames = ['test%d.txt'%i for in in range(1,4) ...

  4. 过来人告诉你,去工作前最好还是学学Git

    前言 只有光头才能变强. 文本已收录至我的GitHub精选文章,欢迎Star:https://github.com/ZhongFuCheng3y/3y 之前遇到过很多同学私信问我:「三歪,我马上要实习 ...

  5. 用python玩推理游戏还能掌握基础知识点,有趣又充实,你不试试吗?

    可能更多的人依然还在苦苦的学python各种知识点,但其实同样很多人,玩着游戏就把python学会了.     用python玩推理游戏,是这份python教程中的12个游戏的其中之一. 有关这份Py ...

  6. 利用salt stack pillar安装多组keepalived

    利用salt stack pillar安装多组keepalived 环境描述 在生产环境中,需要搭建三套keepalived环境,3个master和3个backup,要安装的软件和配置文件,虽然不是很 ...

  7. Python实现监测抖音在线时间,实时记录一个人全天的在线情况

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:小dull鸟 今天给大家分享一篇有趣的文章,灵感来自于前几天与室友的 ...

  8. CLR垃圾收集器

    CLR GC是一种引用跟踪算法,大致步骤如下: 1.暂停进程中所有的线程: 2.标记阶段,遍历堆中的所有对象,标记为删除,然后检查所有活动根,如果有引用对象,就标记那个对象可达,否则不可达: 3.GC ...

  9. Codeforces Round #651 (Div. 2)

    感觉自己无可救药了. A题:找到小于等于n的两个不同的数的gcd最大是多少,显然是floort(n/2).设这两数是a * gcd, b * gcd然后gcd(a,b) = 1,那么gcd要尽量大,不 ...

  10. python实用笔记——IO编程

    打开文件 f = open('/Users/michael/test.txt', 'r') 再读取 >>> f.read() 'Hello, world!' 最后关闭 >> ...