嗯,点开题目,哇!是一道闪亮亮的蓝题!

不要被吓到了,其实,这道题就是一个简单的DP啦!

我们设 \(f[x1][y1][x2][y2][c]\) 为以 \((x1,y1)\) 为左上角,以 \((x2,y2)\) 为右下角的矩形分割成c个部分所取得的最大分数。

枚举每一行(列),将其分割成两部分,然后考虑是继续分割上(左)边还是下(右)边

所以,转移方程就出来啦!

\(f[x1][y1][x2][y2][c]=min(min(f[x1][y1][x][y2][c-1]+sum[x+1][y1][x2][y2]^2,f[x+1][y1][x2][y2][c-1]+sum[x1][y1][x][y2]^2) ,\)

\(min(f[x1][y1][x2][y][c-1]+sum[x1][y+1][x2][y2]^2,f[x1][y+1][x2][y2][c-1]+sum[x1][y1][x2][y]^2))\)

\((x1 \leq x < x2,y1 \leq y < y2)\)

边界情况:当 \(c=1,f[x1][y1][x2][y2][c]=sum[x1][y1][x2][y2]\)

最后结果即为 \(f[1][1][8][8][c]\)

\(sum[x1][y1][x2][y2][c]\) 为以 \((x1,y1)\) 为左上角,以 \((x2,y2)\) 为右下角的矩形内的总分数

对 \(sum\) 进行预处理,这里要算出二维前缀和,设为 \(s[i][j]\)

则 \(sum[x1][y1][x2][y2]=s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1]\)

好了,就这样,一个完美的DP就出来啦!

(也就六重循环吗)

欢乐的贴代码时间:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n,a[9][9],f[9][9][9][9][16];
int s[9][9],sum[9][9][9][9];
int main(){
memset(f,0x3f,sizeof(f));
scanf("%d",&n);
for(int i=1;i<=8;i++){
for(int j=1;j<=8;j++){
scanf("%d",&a[i][j]);
s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
}
}
for(int i=1;i<=8;i++){
for(int j=1;j<=8;j++){
for(int k=i;k<=8;k++){
for(int l=j;l<=8;l++){
sum[i][j][k][l]=s[k][l]-s[i-1][l]-s[k][j-1]+s[i-1][j-1];
f[i][j][k][l][1]=sum[i][j][k][l]*sum[i][j][k][l];
}
}
}
}
for(int c=2;c<=n;c++){
for(int len1=1;len1<=8;len1++){
for(int i=1,j=len1;j<=8;i++,j++){
for(int len2=1;len2<=8;len2++){
for(int k=1,l=len2;l<=8;k++,l++){
int x1=i,y1=k,x2=j,y2=l;
for(int row=x1;row<x2;row++){
f[x1][y1][x2][y2][c]=min(min(f[x1][y1][x2][y2][c],\
f[x1][y1][row][y2][c-1]+sum[row+1][y1][x2][y2]*sum[row+1][y1][x2][y2]),\
f[row+1][y1][x2][y2][c-1]+sum[x1][y1][row][y2]*sum[x1][y1][row][y2]);
}
for(int col=y1;col<y2;col++){
f[x1][y1][x2][y2][c]=min(min(f[x1][y1][x2][y2][c],\
f[x1][y1][x2][col][c-1]+sum[x1][col+1][x2][y2]*sum[x1][col+1][x2][y2]),\
f[x1][col+1][x2][y2][c-1]+sum[x1][y1][x2][col]*sum[x1][y1][x2][col]);
}
}
}
}
}
}
printf("%d\n",f[1][1][8][8][n]);
return 0;
}

本人蒟蒻,求大佬指教~~~~

【Luogu】P1436 棋盘分割 题解的更多相关文章

  1. Luogu P1436 棋盘分割 暴力DP

    我的天,,,,,n=8,k<=15,,,这怕不是暴力DP+高维数组.... 开一个五维数组f[k][i][j][p][q]表示从(i,j)到(p,q)中分成k个矩形最小的平方和. 然后初始化时用 ...

  2. [POJ] 1191 [LUOGU] P1436 棋盘分割

    那个均方差,可以通过展开.合并Σ,发现最终只有Xi^2会对答案造成影响,其他都是定值,所以求出最小的和的平方就行. 其实这才是这题最难的部分,以下都是码农部分. f[x1][y1][x2][y2][k ...

  3. 洛谷 P1436 棋盘分割 解题报告

    P1436 棋盘分割 题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共 ...

  4. P1436 棋盘分割[dp]

    题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  5. 洛谷P1436 棋盘分割

    洛谷题目链接 动态规划: 我们设状态$f[i][j][o][p][k]$表示一个矩形,左上角顶点坐标为$(i,j)$,右下角顶点坐标为$(o,p)$时分割了$k$次,也就是说现在是$k+1$块 我们考 ...

  6. luogu P1549 棋盘问题(2) 题解

    luogu P1549 棋盘问题(2) 题解 题目描述 在\(N * N\)的棋盘上\((1≤N≤10)\),填入\(1,2,-,N^2\)共\(N^2\)个数,使得任意两个相邻的数之和为素数. 例如 ...

  7. POJ1991 NOI1999棋盘分割

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15581   Accepted: 5534 Description ...

  8. POJ 1191 棋盘分割

    棋盘分割 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11213 Accepted: 3951 Description 将一个 ...

  9. poj 1191 棋盘分割 动态规划

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11457   Accepted: 4032 Description ...

随机推荐

  1. Python练习题 045:Project Euler 017:数字英文表达的字符数累加

    本题来自 Project Euler 第17题:https://projecteuler.net/problem=17 ''' Project Euler 17: Number letter coun ...

  2. Python练习题 033:Project Euler 005:最小公倍数

    本题来自 Project Euler 第5题:https://projecteuler.net/problem=5 # Project Euler: Problem 5: Smallest multi ...

  3. 插头 dp

    插头dp 洛谷 黑题板子? P5056 给出n×m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? 1.轮廓线 简单地说,轮廓线就是已决策格子和未决策格子的分界线: 2,插 ...

  4. Java之线程池解析

    线程池 目录 线程池 线程池概述 创建一个线程池并提交线程任务 线程池源码解析 参数认识 构造方法 提交任务 addWorker 执行任务 关闭线程池 线程池概述 什么是线程池 为什么使用线程池 线程 ...

  5. js获取foreach循环选中的值

    一,循环出来的值,通过checked选中,获取到value值 二,定义一个空数组,用push将数据保存在数组里面 以上操作便可以进行虎丘选中的值了

  6. Swoole实时任务异步调用Demo

    server.php <?php class Server { private $serv; private $logFilePath = "/data/wwwroot/houtai/ ...

  7. CSS精灵图与字体图标

    CSS精灵图与字体图标 1. 精灵图 当用户访问一个网站时,需要向服务器发送请求,网页上的每张图像都要经过一次请求才能展现给用户.然而,一个网页中往往会应用很多小的背景图像作为修饰,当网页中的图像过多 ...

  8. pytest使用小结

    一.pytest简洁和好处 自动发现测试用例 testloader 断言方便 ,自定义错误提示 assert 正则匹配 灵活运行指定的测试用例,指定模块,制定测试类,测试用例 -k 标签化,回归 正向 ...

  9. kafka-伪集群搭建

      一.简介 Apache Kafka是一个快速.可扩展的.高吞吐的.可容错的分布式"发布-订阅"消息系统,使用Scala与Java语言编写,能够将消息从一个端点传递到另一个端点, ...

  10. 白话k8s-Pod的组成

    k8s的所有功能都是围绕着Pod进行展开的,我们经常会看到类似这样一张图 告诉我们,Pod是一组container的集合,container之间可以通过localhost:port的方式直接访问. 感 ...