题意:

给定两个整数 \(n, m\),求:

\[\prod_{i = 1} ^ n \prod_{j = 1} ^ m \operatorname{Fib}_{\gcd\left(n, m\right)}
\]

其中 \(\operatorname{Fib}_n\) 表示斐波那契数列的第 \(n\) 项,斐波那契数列按照如下方式递归定义:

\[\begin{equation}
\operatorname{Fib}_n =
\begin{cases}
1 & n = 1\ \text{or}\ n = 2\\
\operatorname{Fib}_{n - 2} + \operatorname{Fib}_{n - 1} & \text{otherwise}\\
\end{cases}
\end{equation}
\]

正文

开始推导!

老套路,先枚举 \(\gcd\left(i, j\right)\), 设 \(d = \gcd\left( i, j \right)\)。

则考虑对于每个可行的 \(d\),对应的 \(\operatorname{Fib}_d\) 被乘了多少次。

显然是:

\[\sum_{i = 1} ^ n \sum_{j = 1} ^ m [\gcd\left(i, j\right) = d]\\
= \sum_{i = 1} ^ {\lfloor\frac{n}{d}\rfloor} \sum_{j = 1} ^ {\lfloor\frac{m}{d}\rfloor} [\gcd\left(i, j\right) = 1]\\
= \sum_{i = 1} ^ {\lfloor\frac{n}{d}\rfloor} \sum_{j = 1} ^ {\lfloor\frac{m}{d}\rfloor} \sum_{t|\gcd\left(i, j\right)} \mu \left(t\right)\\
= \sum_{t = 1} ^ {\lfloor\frac{\min\{n, m\}}{d}\rfloor} \mu \left(t\right) \cdot \lfloor\frac{n}{dt}\rfloor \cdot \lfloor\frac{m}{dt}\rfloor
\]

次。

即:

\[\text{原式} = \prod_{d = 1} ^ {\min\{n, m\}} \operatorname{Fib}_d^{(\sum_{t = 1} ^ {\lfloor\frac{\min\{n, m\}}{d}\rfloor} \mu \left(t\right) \cdot \lfloor\frac{n}{dt}\rfloor \cdot \lfloor\frac{m}{dt}\rfloor)}
\]

换元。设 \(T = dt\),则有:

\[\text{原式} = \prod_{d = 1} ^ {\min\{n, m\}} \operatorname{Fib}_d^{(\sum_{t = 1} ^ {\lfloor\frac{\min\{n, m\}}{d}\rfloor} \mu \left(\frac{T}{d}\right) \cdot \lfloor\frac{n}{T}\rfloor \cdot \lfloor\frac{m}{T}\rfloor)}\\
= \prod_{d = 1} ^ {\min\{n, m\}} (\prod_{t = 1} ^ {\lfloor\frac{\min\{n, m\}}{d}\rfloor} \operatorname{Fib}_d^{\mu \left(\frac{T}{d}\right)}) ^ {\lfloor\frac{n}{T}\rfloor \cdot \lfloor\frac{m}{T}\rfloor}\\
= \prod_{T = 1} ^ {\min\{n, m\}} (\prod_{d | T} \operatorname{Fib}_d ^ {\mu \left(\frac{T}{d}\right)})^{\lfloor\frac{n}{T}\rfloor \cdot \lfloor\frac{m}{T}\rfloor}\]

对于每个 \(T\), 预处理:

\[\prod_{d | T} \operatorname{Fib}_d ^ {\mu \left(\frac{T}{d}\right)}
\]

然后整除分块求解即可。

洛谷 P3704 SDOI2017 数字表格的更多相关文章

  1. bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格

    洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...

  2. 洛谷P3704 [SDOI2017]数字表格

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]f[i] 表示数列的第ii 项,那么 f[0]=0f[0]=0 ,f[1]=1f[1]=1 , f[n]=f[n-1]+f[n-2],n ...

  3. 洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)

    题面传送门 题意: 求 \[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)} \] \(T\) 组测试数据,\(1 \leq T \leq ...

  4. 洛谷P3704 [SDOI2017]数字表格(莫比乌斯反演)

    传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include& ...

  5. 洛谷3704 [SDOI2017] 数字表格 【莫比乌斯反演】

    题目分析: 比较有意思,但是套路的数学题. 题目要求$ \prod_{i=1}^{n} \prod_{j=1}^{m}Fib(gcd(i,j)) $. 注意到$ gcd(i,j) $有大量重复,采用莫 ...

  6. 洛咕 P3704 [SDOI2017]数字表格

    大力推式子 现根据套路枚举\(\gcd(i,j)\) \(ans=\Pi_{x=1}^nfib[x]^{\sum_{i=1}^{n/x}\sum_{j=1}^{n/x}[\gcd(i,j)=1]}\) ...

  7. P3704 [SDOI2017]数字表格

    P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...

  8. P3704 [SDOI2017]数字表格 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P3704 [题解] https://www.luogu.org/blog/cjyyb/solution-p3 ...

  9. luogu P3704 [SDOI2017]数字表格

    传送门 我是真的弱,推式子只能推一半 下面假设\(n<m\) 考虑题目要求的东西,可以考虑每个gcd的贡献,即\[\prod_{d=1}^{n}f[d]^{\sum_{i=1}^{\lfloor ...

随机推荐

  1. 【原创】Linux PCI驱动框架分析(二)

    背 景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本 ...

  2. 深入理解Kafka必知必会(1)

    Kafka的用途有哪些?使用场景如何? 消息系统: Kafka 和传统的消息系统(也称作消息中间件)都具备系统解耦.冗余存储.流量削峰.缓冲.异步通信.扩展性.可恢复性等功能.与此同时,Kafka 还 ...

  3. Spark算子使用

    一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写sp ...

  4. 第8章 控制对象的访问(setter、getter、proxy)

    目录 1. 使用getter和setter控制属性访问 1.1 定义getter与setter 通过对象字面量定义,或在ES6的class中定义 通过使用内置的Object.definePropert ...

  5. 如何限制电脑访问网址—使用Host限制访问网址

    如何限制电脑访问网址-使用Host限制访问网址 1. 打开C:\Windows\System32\drivers\etc 2. 打开hosts 3. 修改host内容,如下示例 127.0.0.1  ...

  6. Lock锁 精讲

    1.为什么需要Lock 为什么synchronized不够用,还需要Lock Lock和synchronized这两个最常见的锁都可以达到线程安全的目的,但是功能上有很大不同. Lock并不是用来代替 ...

  7. fastjson反序列化漏洞原理及利用

    重要漏洞利用poc及版本 我是从github上的参考中直接copy的exp,这个类就是要注入的类 import java.lang.Runtime; import java.lang.Process; ...

  8. SqlLoad的简单使用

    sqlload的简单使用: 能实现: 快速导入大量数据 1.先安装oracle 客户端机器.有点大,600M+, 2.安装时选择管理员安装(1.1g) 3.第三步的时候我的出错了.说是环境变量校验不通 ...

  9. Invalid bound statement (not found): com.xxx.xxx.dao.ShopMapper.insertShop

    mybatis在编写完SQL,进行测试的时候出现了错误,显示 org.apache.ibatis.binding.BindingException: Invalid bound statement ( ...

  10. IPC 经典问题:Sleeping Barber Problem

    完整代码实现: #include <stdio.h> #include <unistd.h> #include <time.h> #include <stdl ...