1、项目名称:

2、程序代码:

package com.sort;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class Sort {
//map将输入中的value化成IntWritable类型,作为输出的key
public static class Map extends Mapper<Object, Text , IntWritable, IntWritable>{
public static IntWritable data = new IntWritable(); public void map(Object key , Text value, Context context) throws IOException,InterruptedException{
System.out.println("Mapper.................");
System.out.println("key:"+key+" value:"+value); String line = value.toString();
data.set(Integer.parseInt(line));
context.write(data, new IntWritable(1));
System.out.println("data:"+data+" context:"+context);
}
} //reduce将输入的key复制到输出的value上,然后根据输入的value-list中元素的个数决定key的输出次数
//用全局linenum来代表key的位次
public static class Reduce extends Reducer<IntWritable , IntWritable, IntWritable, IntWritable >{
public static IntWritable linenum = new IntWritable(1); public void reduce(IntWritable key, Iterable<IntWritable> values , Context context)throws IOException,InterruptedException{
System.out.println("Reducer.................");
System.out.println("key:"+key+" value:"+values); for(IntWritable val : values){
context.write(linenum, key);
System.out.println("linenum:" + linenum +" key:"+key+" context:"+context);
linenum = new IntWritable(linenum.get()+1); }
}
}
public static void main(String [] args) throws Exception{
Configuration conf = new Configuration();
String [] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length != 2){
System.out.println("Usage: sort<in><out>");
System.exit(2);
}
Job job = new Job(conf,"sort");
job.setJarByClass(Sort.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class); job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job,new Path(otherArgs[1])); System.exit(job.waitForCompletion(true)? 0 : 1);
}
}
3、测试数据:
file1:
2
32
654
32
15
756
65223
 
file2:
5956
22
650
92
 
file3:
26
54
6
 
4、运行过程:
14/09/21 17:44:27 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/09/21 17:44:27 WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
14/09/21 17:44:28 INFO input.FileInputFormat: Total input paths to process : 3
14/09/21 17:44:28 WARN snappy.LoadSnappy: Snappy native library not loaded
14/09/21 17:44:28 INFO mapred.JobClient: Running job: job_local_0001
14/09/21 17:44:28 INFO util.ProcessTree: setsid exited with exit code 0
14/09/21 17:44:28 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@365f3cec
14/09/21 17:44:28 INFO mapred.MapTask: io.sort.mb = 100
14/09/21 17:44:28 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/21 17:44:28 INFO mapred.MapTask: record buffer = 262144/327680
Mapper.................
key:0  value:2
data:2 context:org.apache.hadoop.mapreduce.Mapper$Context@40804be
Mapper.................
key:2  value:32
data:32 context:org.apache.hadoop.mapreduce.Mapper$Context@40804be
Mapper.................
key:5  value:654
data:654 context:org.apache.hadoop.mapreduce.Mapper$Context@40804be
Mapper.................
key:9  value:32
data:32 context:org.apache.hadoop.mapreduce.Mapper$Context@40804be
Mapper.................
key:12  value:15
data:15 context:org.apache.hadoop.mapreduce.Mapper$Context@40804be
Mapper.................
key:15  value:756
data:756 context:org.apache.hadoop.mapreduce.Mapper$Context@40804be
Mapper.................
key:19  value:65223
data:65223 context:org.apache.hadoop.mapreduce.Mapper$Context@40804be
14/09/21 17:44:28 INFO mapred.MapTask: Starting flush of map output
14/09/21 17:44:28 INFO mapred.MapTask: Finished spill 0
14/09/21 17:44:28 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
14/09/21 17:44:29 INFO mapred.JobClient:  map 0% reduce 0%
14/09/21 17:44:31 INFO mapred.LocalJobRunner:
14/09/21 17:44:31 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
14/09/21 17:44:31 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@5c72877c
14/09/21 17:44:31 INFO mapred.MapTask: io.sort.mb = 100
14/09/21 17:44:31 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/21 17:44:31 INFO mapred.MapTask: record buffer = 262144/327680
Mapper.................
key:0  value:5956
data:5956 context:org.apache.hadoop.mapreduce.Mapper$Context@5c0134fb
Mapper.................
key:5  value:22
data:22 context:org.apache.hadoop.mapreduce.Mapper$Context@5c0134fb
Mapper.................
key:8  value:650
data:650 context:org.apache.hadoop.mapreduce.Mapper$Context@5c0134fb
Mapper.................
key:12  value:92
data:92 context:org.apache.hadoop.mapreduce.Mapper$Context@5c0134fb
14/09/21 17:44:31 INFO mapred.MapTask: Starting flush of map output
14/09/21 17:44:31 INFO mapred.MapTask: Finished spill 0
14/09/21 17:44:31 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
14/09/21 17:44:32 INFO mapred.JobClient:  map 100% reduce 0%
14/09/21 17:44:34 INFO mapred.LocalJobRunner:
14/09/21 17:44:34 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
14/09/21 17:44:34 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@5c88c5d3
14/09/21 17:44:34 INFO mapred.MapTask: io.sort.mb = 100
14/09/21 17:44:34 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/21 17:44:34 INFO mapred.MapTask: record buffer = 262144/327680
Mapper.................
key:0  value:26
data:26 context:org.apache.hadoop.mapreduce.Mapper$Context@36a05d78
Mapper.................
key:3  value:54
data:54 context:org.apache.hadoop.mapreduce.Mapper$Context@36a05d78
Mapper.................
key:6  value:6
data:6 context:org.apache.hadoop.mapreduce.Mapper$Context@36a05d78
14/09/21 17:44:34 INFO mapred.MapTask: Starting flush of map output
14/09/21 17:44:34 INFO mapred.MapTask: Finished spill 0
14/09/21 17:44:34 INFO mapred.Task: Task:attempt_local_0001_m_000002_0 is done. And is in the process of commiting
14/09/21 17:44:37 INFO mapred.LocalJobRunner:
14/09/21 17:44:37 INFO mapred.Task: Task 'attempt_local_0001_m_000002_0' done.
14/09/21 17:44:37 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@3c521e5d
14/09/21 17:44:37 INFO mapred.LocalJobRunner:
14/09/21 17:44:37 INFO mapred.Merger: Merging 3 sorted segments
14/09/21 17:44:37 INFO mapred.Merger: Down to the last merge-pass, with 3 segments left of total size: 146 bytes
14/09/21 17:44:37 INFO mapred.LocalJobRunner:
Reducer.................
key:2  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:1  key:2 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:6  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:2  key:6 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:15  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:3  key:15 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:22  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:4  key:22 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:26  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:5  key:26 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:32  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:6  key:32 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
linenum:7  key:32 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:54  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:8  key:54 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:92  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:9  key:92 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:650  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:10  key:650 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:654  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:11  key:654 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:756  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:12  key:756 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:5956  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:13  key:5956 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
Reducer.................
key:65223  value:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@38839cf7
linenum:14  key:65223 context:org.apache.hadoop.mapreduce.Reducer$Context@23475bbf
14/09/21 17:44:37 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
14/09/21 17:44:37 INFO mapred.LocalJobRunner:
14/09/21 17:44:37 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
14/09/21 17:44:37 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9000/user/hadoop/sort_output
14/09/21 17:44:40 INFO mapred.LocalJobRunner: reduce > reduce
14/09/21 17:44:40 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
14/09/21 17:44:41 INFO mapred.JobClient:  map 100% reduce 100%
14/09/21 17:44:41 INFO mapred.JobClient: Job complete: job_local_0001
14/09/21 17:44:41 INFO mapred.JobClient: Counters: 22
14/09/21 17:44:41 INFO mapred.JobClient:   Map-Reduce Framework
14/09/21 17:44:41 INFO mapred.JobClient:     Spilled Records=28
14/09/21 17:44:41 INFO mapred.JobClient:     Map output materialized bytes=158
14/09/21 17:44:41 INFO mapred.JobClient:     Reduce input records=14
14/09/21 17:44:41 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=0
14/09/21 17:44:41 INFO mapred.JobClient:     Map input records=14
14/09/21 17:44:41 INFO mapred.JobClient:     SPLIT_RAW_BYTES=345
14/09/21 17:44:41 INFO mapred.JobClient:     Map output bytes=112
14/09/21 17:44:41 INFO mapred.JobClient:     Reduce shuffle bytes=0
14/09/21 17:44:41 INFO mapred.JobClient:     Physical memory (bytes) snapshot=0
14/09/21 17:44:41 INFO mapred.JobClient:     Reduce input groups=13
14/09/21 17:44:41 INFO mapred.JobClient:     Combine output records=0
14/09/21 17:44:41 INFO mapred.JobClient:     Reduce output records=14
14/09/21 17:44:41 INFO mapred.JobClient:     Map output records=14
14/09/21 17:44:41 INFO mapred.JobClient:     Combine input records=0
14/09/21 17:44:41 INFO mapred.JobClient:     CPU time spent (ms)=0
14/09/21 17:44:41 INFO mapred.JobClient:     Total committed heap usage (bytes)=1325400064
14/09/21 17:44:41 INFO mapred.JobClient:   File Input Format Counters
14/09/21 17:44:41 INFO mapred.JobClient:     Bytes Read=48
14/09/21 17:44:41 INFO mapred.JobClient:   FileSystemCounters
14/09/21 17:44:41 INFO mapred.JobClient:     HDFS_BYTES_READ=161
14/09/21 17:44:41 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=162878
14/09/21 17:44:41 INFO mapred.JobClient:     FILE_BYTES_READ=3682
14/09/21 17:44:41 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=81
14/09/21 17:44:41 INFO mapred.JobClient:   File Output Format Counters
14/09/21 17:44:41 INFO mapred.JobClient:     Bytes Written=81
 
5、运行结果:
1    2
2    6
3    15
4    22
5    26
6    32
7    32
8    54
9    92
10    650
11    654
12    756
13    5956
14    65223

MapReduce编程系列 — 4:排序的更多相关文章

  1. 【原创】MapReduce编程系列之二元排序

    普通排序实现 普通排序的实现利用了按姓名的排序,调用了默认的对key的HashPartition函数来实现数据的分组.partition操作之后写入磁盘时会对数据进行排序操作(对一个分区内的数据作排序 ...

  2. MapReduce编程:数字排序

    问题描述 将乱序数字按照升序排序. 思路描述 按照mapreduce的默认排序,依次输出key值. 代码 package org.apache.hadoop.examples; import java ...

  3. MapReduce编程系列 — 6:多表关联

    1.项目名称: 2.程序代码: 版本一(详细版): package com.mtjoin; import java.io.IOException; import java.util.Iterator; ...

  4. MapReduce编程系列 — 5:单表关联

    1.项目名称: 2.项目数据: chile    parentTom    LucyTom    JackJone    LucyJone    JackLucy    MaryLucy    Ben ...

  5. MapReduce编程系列 — 3:数据去重

    1.项目名称: 2.程序代码: package com.dedup; import java.io.IOException; import org.apache.hadoop.conf.Configu ...

  6. MapReduce编程系列 — 2:计算平均分

    1.项目名称: 2.程序代码: package com.averagescorecount; import java.io.IOException; import java.util.Iterator ...

  7. MapReduce编程系列 — 1:计算单词

    1.代码: package com.mrdemo; import java.io.IOException; import java.util.StringTokenizer; import org.a ...

  8. 【原创】MapReduce编程系列之表连接

    问题描述 需要连接的表如下:其中左边是child,右边是parent,我们要做的是找出grandchild和grandparent的对应关系,为此需要进行表的连接. Tom Lucy Tom Jim ...

  9. MapReduce 编程 系列九 Reducer数目

    本篇介绍怎样控制reduce的数目.前面观察结果文件,都会发现通常是以part-r-00000 形式出现多个文件,事实上这个reducer的数目有关系.reducer数目多,结果文件数目就多. 在初始 ...

随机推荐

  1. [CSS]下拉菜单

    原理:先让下拉菜单隐藏,鼠标移到的时候在显示出来 1>display 无动画效果,图片是秒出 2>opacity 有动画效果,我这里是1S出现,推荐配合绝对定位使用

  2. jquery返回顶部特效

    <style> p#back-to-top{position:fixed; bottom:100px;right:10px; display: none; } p#back-to-top ...

  3. 菜鸟聊:PHP

    学习PHP已经有2个月时间了,从一开始的一片空白,到现在的刚刚入门,我对PHP的了解也有更多的认知,希望通过我对PHP的理解,能帮助到更多像我一样的新手更早的认识PHP.(PS:以下内容的一部分是摘自 ...

  4. PHP网页的工作原理

    网络基本概念 IP地址 唯一标识网络上的主机或设备. IP地址是由四段8位二进制构成,中间用小数点隔开.如:192.168.18.70 每一段取值0-255的十进制. 特殊的IP地址:127.0.0. ...

  5. XZ压缩最新压缩率之王

    xz这个压缩可能很多都很陌生,不过您可知道xz是绝大数linux默认就带的一个压缩工具. 之前xz使用一直很少,所以几乎没有什么提起. 我是在下载phpmyadmin的时候看到这种压缩格式的,phpm ...

  6. maven项目转eclipse工程的命令:eclipse.bat

    call mvn clean:clean call mvn eclipse:eclipse -DdownloadSources=true @pause 复制以上内容,保存为eclipse.bat 以后 ...

  7. sirius的python学习笔记(1)

    1.可以通过try...except语句来简单的判断字符串是否为整数值,如例程 x = raw_input('>') try: print int(x) except ValueError: r ...

  8. Huawei HG556a A版 刷 openwrt

    一直想玩玩openwrt,调研了一下 HG556a尽管散热很烂,但性价比超高,于是淘宝入手一台A版,A版和C版区别为wifi芯片: 到货后在网上找了几个教程便开始动手刷openwrt,但刷机的过程中还 ...

  9. Beaglebone Back学习一(开发板介绍)

    随着开源软件的盛行.成熟,开源硬件也迎来了春天,先有Arduino,后有Raspherry Pi,到当前的Beaglebone .相信在不久的将来,开源项目将越来越多,越来越走向成熟.         ...

  10. (转)MVC 3 数据验证 Model Validation 详解

    继续我们前面所说的知识点进行下一个知识点的分析,这一次我们来说明一下数据验证.其实这是个很容易理解并掌握的地方,但是这会浪费大家狠多的时间,所以我来总结整理一下,节约一下大家宝贵的时间. 在MVC 3 ...