【题目链接】

http://www.lydsy.com/JudgeOnline/problem.php?id=4423

【题意】

给定一个平面图,随时删边,并询问删边后两点是否连通。强制在线。

【科普】

设有平面图G=(V,E),满足下列条件的图G'= (V',E') 称为图G的对偶图:G的任一面Ri内有且仅有一点Vi';对G的域Ri和Rj的共同边界Ek,画一条边Ek'=(Vi',Vj')且只与Ek交于一点;若Ek完全处于Ri中,则Vi'有一自环Ek',如下图G'是G的对偶图:

From here

【思路】

如果不强制在线的话,就是BC上的一道题,可以时光倒流+并查集来做。

加上强制在线,我们将平面图转化为它的对偶图,两点之间删边的操作使得两个平面连通,当对应的两个平面不连通的时候,说明两点之间有环,此时删边后两点依旧连通。并查集维护连通性。

【代码】

 #include<cstdio>
#include<iostream>
#define FOR(a,b,c) for(int a=b;a<=c;a++)
using namespace std; const int N = +; int id[N][N],n,K; struct UFS {
int fa[N*N];
UFS() { FOR(i,,N*N-) fa[i]=i; }
int Find(int u) {
return u==fa[u]? u:fa[u]=Find(fa[u]);
}
void Union(int u,int v) {
u=Find(u),v=Find(v);
if(u!=v) fa[u]=v;
}
} s; int main()
{
scanf("%d%d",&n,&K);
int cnt=;
//id[0][..]||id[..][0] <- 0
FOR(i,,n-) FOR(j,,n-)
id[i][j]=++cnt;
int b,c,e,f,ans=;
char a[],d[];
FOR(i,,K) {
if(ans)
scanf("%d%d%s%d%d%s",&b,&c,&a,&e,&f,&d);
else
scanf("%d%d%s%d%d%s",&e,&f,&d,&b,&c,&a);
if(a[]=='N') e=b-,f=c;
else e=b,f=c-;
if(ans=(s.Find(id[b][c])!=s.Find(id[e][f])))
s.Union(id[b][c],id[e][f]);
puts(ans?"TAK":"NIE");
}
return ;
}

bzoj 4423 [AMPPZ2013]Bytehattan(对偶图,并查集)的更多相关文章

  1. 【BZOJ4423】[AMPPZ2013]Bytehattan 对偶图+并查集

    [BZOJ4423][AMPPZ2013]Bytehattan Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v), ...

  2. [BZOJ4423][AMPPZ2013]Bytehattan(对偶图+并查集)

    建出对偶图,删除一条边时将两边的格子连边.一条边两端连通当且仅当两边的格子不连通,直接并查集处理即可. #include<cstdio> #include<algorithm> ...

  3. BZOJ_4423_[AMPPZ2013]Bytehattan_对偶图+并查集

    BZOJ_4423_[AMPPZ2013]Bytehattan_对偶图+并查集 Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的. 有k次操作,每次会删掉图中的 ...

  4. BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图

    4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec  Memory Limit: 128 MB Submit: 277  Solved: 183 [Submit ...

  5. BZOJ 4423: [AMPPZ2013]Bytehattan

    Sol 对偶图+并查集. 思路非常好,将网格图转化成对偶图,在原图中删掉一条边,相当于在对偶图中连上一条边(其实就是网格的格点相互连边),每次加边用并查集维护就可以了. 哦对,还要注意边界就是网格外面 ...

  6. BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集

    Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...

  7. BZOJ.2054.疯狂的馒头(并查集)

    BZOJ 倒序处理,就是并查集傻题了.. 并查集就是确定下一个未染色位置的,直接跳到那个位置染.然而我越想越麻烦=-= 以为有线性的做法,发现还是要并查集.. 数据随机线段树也能过去. //18400 ...

  8. 【bzoj5183】[Baltic2016]Park 离线+对偶图+并查集

    题目描述 在Byteland的首都,有一个矩形围栏围起来的公园.在这个公园里树和访客都以一个圆形表示.公园有四个出入口,每个角落一个(1=左下角,2=右下角,3=右上角,4=左上角).访客能通过这些出 ...

  9. 【bzoj3007】拯救小云公主 二分+对偶图+并查集

    题目描述 英雄又即将踏上拯救公主的道路…… 这次的拯救目标是——爱和正义的小云公主. 英雄来到boss的洞穴门口,他一下子就懵了,因为面前不只是一只boss,而是上千只boss.当英雄意识到自己还是等 ...

随机推荐

  1. UML建模之活动图介绍(Activity Diagram)

    一.活动图的组成元素 Activity Diagram Element 1.活动状态图(Activity) 2.动作状态(Actions) 3.动作状态约束(Action Constraints) 4 ...

  2. IDEA建项目的正确姿势

    今天建多模块的分布式项目的时候折腾死了,可能是建项目的方法不对,最后经过摸索,觉得这样是比较合适的: 首先建一个空的项目:Empty Project,就是项目文件夹 然后在里面建model

  3. Android Handler与多线程

    本文首先解释一下handler是用来干嘛的,然后通过例子介绍其在多线程中的应用. 什么是Handler handler通俗一点讲就是用来在各个进程之间发送数据的处理对象.在任何进程中,只要获得了另一个 ...

  4. newClass a = Func(3)中隐藏的操作

    缘起 #include <iostream> #include <bitset> using namespace std; class A { public: A() { co ...

  5. PHP之APC缓存详细介绍(转)

    1.APC缓存简介 APC,全称是Alternative PHP Cache,官方翻译叫”可选PHP缓存”.它为我们提供了缓存和优化PHP的中间代码的框架. APC的缓存分两部分:系统缓存和用户数据缓 ...

  6. Learning Lua Programming (2) Lua编程基础

    开始学习Lua编程,首先从一些简单的语法开始. 一.编辑环境 下面推荐一个Lua编程的IDE,感觉是很强大的.ZeroBrane Studio,windows平台,mac平台都有.点击打开链接  官方 ...

  7. YUV和RGB格式分析

    做嵌入式项目的时候,涉及到YUV视频格式到RGB图像的转换,虽然之前有接触到RGB到都是基于opencv的处理,很多东西并不需要我们过多深入的去探讨,现在需要完全抛弃现有的算法程序,需要从内存中一个字 ...

  8. .Net MVC API初试

    新建.net mvc api项目后,直接运行,默认会访问http://localhost:xxxx/Home/Index页面,这个页面不是要访问的API页面. 从项目的目录可以看出,默认的API页面访 ...

  9. Protected Member Access

    https://msdn.microsoft.com/en-us/library/bcd5672a.aspx 官方的说法The protected keyword is a member access ...

  10. [HDOJ2586]How far away?(最近公共祖先, 离线tarjan, 并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 这题以前做过…现在用tarjan搞一发…竟然比以前暴力过的慢………… 由于是离线算法,需要Que ...