题目描述

给出一个无序的整形数组,找到最长上升子序列的长度。

例如,

给出 [10, 9, 2, 5, 3, 7, 101, 18]
最长的上升子序列是 [2, 3, 7, 101],因此它的长度是4。因为可能会有超过一种的最长上升子序列的组合,因此你只需要输出对应的长度即可。

解题思路

用动态规划思想,考虑用一个数组dp记录到当前数字为止,可能的最长上升子序列长度,注意并不一定是当前子序列的解。这样最后返回dp数组的长度即可。具体以上述数组为例:

  • 首先把10加入到dp中,此时最长上升子序列长度为1
  • 下一个数字是9,它比dp中仅有的数字10要小,可知以9为子序列首数字的可能长度要比10长,因此用9替换10
  • 同样把2替换dp中仅有的数字9
  • 加入5时,因为5比2大,所以可以组成最长上升子序列,因此把5加入到2之后
  • 当前数字3比dp中第二个数字5要小,考虑到之后可能出现的上升序列可能小于5,因此用3替换5
  • 加入7时,因为7比dp中最后一个数字3大,所以可以组成最长上升子序列,因此把7加入到3之后
  • 同样加入101到dp
  • 加入18时,按上述规则用18替换101,最后dp数组为[2,3,7,18],因此最长上升子序列长度为4

通过以上顺序,可以总结出dp数组变化规则:

  • 若当前数字大于dp中最后一个数字,则直接插入到最后
  • 找到dp数组中第一个大于当前数字的数,并替换为当前数字
  • 遍历完数组后,dp数组的大小即为最长上升子序列的长度

其中查找dp数组中第一个大于当前数字的数时,可用二分查找降低时间复杂度,这样此解法的总时间复杂度为Ο(nlogn)

代码

 class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int l=nums.size();
vector<int> dp;
if(l==)
return ;
dp.push_back(nums[]);
for(int i=;i<l;i++){
biReplace(dp,nums[i]);
}
return dp.size();
}
void biReplace(vector<int>& dp, int x){
int f=,l=dp.size()-;
if(x>dp[l]){
dp.push_back(x);
return;
}
int m=(f+l)/;
while(dp[m]!=x){
if(dp[m]>x)
l=m-;
else f=m+;
if(f>l){
m=f;
break;
}
m=(f+l)/;
}
dp[m]=x;
}
};

LeetCode 300. 最长上升子序列(Longest Increasing Subsequence)的更多相关文章

  1. 300最长上升子序列 · Longest Increasing Subsequence

    [抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2 ...

  2. [Swift]LeetCode300. 最长上升子序列 | Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  3. nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)

    最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://b ...

  4. 动态规划--最长上升子序列(Longest increasing subsequence)

    前面写了最长公共子序列的问题.然后再加上自身对动态规划的理解,真到简单的DP问题很快就解决了.其实只要理解了动态规划的本质,那么再有针对性的去做这方的题目,思路很快就会有了.不错不错~加油 题目描述: ...

  5. 最长递增子序列(Longest increasing subsequence)

    问题定义: 给定一个长度为N的数组A,找出一个最长的单调递增子序列(不要求连续). 这道题共3种解法. 1. 动态规划 动态规划的核心是状态的定义和状态转移方程.定义lis(i),表示前i个数中以A[ ...

  6. 【转】动态规划:最长递增子序列Longest Increasing Subsequence

    转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...

  7. 算法实践--最长递增子序列(Longest Increasing Subsquence)

    什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5 ...

  8. Java实现 LeetCode 300 最长上升子序列

    300. 最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,10 ...

  9. leetcode 300最长上升子序列

    用递归DFS遍历所有组合肯定积分会超时,原因是有很多重复的操作,可以想象每次回溯后肯定会有重复操作.所以改用动态规划.建立一个vector<int>memo,初始化为1,memo[i]表示 ...

随机推荐

  1. O024、Nova组件如何协同工作

    参考https://www.cnblogs.com/CloudMan6/p/5415836.html   Nova 物理部署方案   前面大家已经看到 Nova 由很多子服务组成,我们也知道OpenS ...

  2. selenium 模拟登陆豆瓣,爬取武林外传的短评

    selenium 模拟登陆豆瓣,爬去武林外传的短评: 在最开始写爬虫的时候,抓取豆瓣评论,我们从F12里面是可以直接发现接口的,但是最近豆瓣更新,数据是JS异步加载的,所以没有找到合适的方法爬去,于是 ...

  3. 如何避免学习linux必然会遇到的几个问题

    相信在看这篇文章的都是对linux系统所迷的志同道合的人,不管你是刚开始学,还是已经接触过一些linux的知识,下面的问题是你在学习linux所必须遇到的,若是没有的话那我只能说大神我服你了.下面我就 ...

  4. 模块之-os模块

    模块之-os模块 >>> import os >>> os.getcwd() #获取当前工作目录 'C:\\Users\\Administrator' >&g ...

  5. openstack Rocky系列之keystone:(一)keystone的启动

    keystone在httpd的入口执行文件为/usr/bin/keystone-wsgi-public 查看文件/usr/bin/keystone-wsgi-public,根据代码,看到主要是这几行代 ...

  6. 测试数年来,我只提了几十个bug

    ---恢复内容开始--- 测试做了十来年,大大小小的项目产品已经记不清了,开发们在一如既往地改着改了无数遍的bug,测试也一如既往的提着提了无数遍的bug,那么今天笔者对以往的bug类型做一个简单的总 ...

  7. 解决 android studio 出现:"AndroidStudio:Could not GET 'https://dl.google.com Received status code 400 from server: Bad Request"问题

    一.android studio 编译项目时出现"AndroidStudio:Could not GET 'https://dl.google.com Received status cod ...

  8. 面试复习题(二)JavaSE高级(未完成)

    一.Java中的反射 3.说说你对Java中反射的理解 Java中的反射首先是能够获取到Java中要反射类的字节码,获取字节码有3种办法. class.forName(className) 类名.cl ...

  9. 标准C语言(10)

    指针数组的每个存储区是一个指针类型的存储区,字符指针数组包含多个字符类型的指针,每个字符类型指针可以代表一个字符串.字符指针数组可以用来代表多个相关字符串,二维字符数组也可以用来记录多个相关字符串,通 ...

  10. Werkzeug(Flask)之Local、LocalStack和LocalProxy