题解 \(by\;zj\varphi\)

原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案。

设 \(dp_{i,j}\) 表示在前 \(i\) 个数中,第 \(i\) 个的排名为 \(j\)的方案数

方程:

\[f_{i,j}=\begin{cases}
\sum\limits_{k=j}^{i-1} f_{i-1,k},(p_{i-1}<p_i)\\
\sum\limits_{k=1}^{j-1} f_{i-1,k},(p_{i-1}>p_i)\\
\end{cases}
\]

直接前缀和优化即可 \(\mathcal O\rm(n^2)\)

Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?x:-x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=5e3+7,MOD=1e9+7;
int dp[N][N],g[N][N],a[N],n,ans;
bool mv[N];
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n;
for (ri i(0);i<n;p(i)) cin >> a[i];
for (ri i(0);i<n;p(i))
if (i<a[i]) {
if (i) mv[i-1]=1;
mv[a[i]-1]=1;
} else for (ri j(a[i]);j<i-1;p(j)) mv[j]=1;
dp[0][1]=g[0][1]=1;
for (ri i(1);i<n-1;p(i)) {
for (ri j(1);j<=i+1;p(j)) {
if (mv[i-1]) dp[i][j]=(dp[i][j]+g[i-1][i]-g[i-1][j-1]+MOD)%MOD;
else dp[i][j]=(dp[i][j]+g[i-1][j-1])%MOD;
g[i][j]=(g[i][j-1]+dp[i][j])%MOD;
}
}
for (ri i(1);i<n;p(i)) ans=(ans+dp[n-2][i])%MOD;
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $30\; \rm 毛二琛$的更多相关文章

  1. NOIP 模拟 $30\; \rm 毛一琛$

    题解 \(by\;zj\varphi\) 如何判断一个集合可以被拆成两个相等的部分? 枚举两个集合,如果它们的和相等,那么他们的并集就是合法的,复杂度 \(\mathcal O\rm(3^n)\) \ ...

  2. NOIP 模拟 $30\; \rm 毛三琛$

    题解 \(by\;zj\varphi\) 二分答案,考虑二分背包中的最大值是多少. 枚举 \(p\) 的值,在当前最优答案不优时,直接跳掉. 随机化一下 \(p\),这样复杂度会有保证. Code # ...

  3. noip模拟30[毛毛毛探探探]

    \(noip模拟30\;solutions\) 所以说,这次被初中的大神给爆了????? 其实真的不甘心,这次考场上的遗憾太多,浪费的时间过多,心情非常不好 用这篇题解来结束这场让人伤心的考试吧 \( ...

  4. Noip模拟30 2021.8.4

    T1 毛一琛 考场上打的稳定的$O((2^n)^2)$的暴力.其实再回忆一下上次那道用二进制枚举的题$y$ 就可以知道一样的道理,使用$\textit{Meet In the Middle}$, 按照 ...

  5. 2021.8.4考试总结[NOIP模拟30]

    T1 毛衣衬 将合法子集分为两个和相等的集合. 暴力枚举每个元素是否被选,放在哪种集合,复杂度$O(3^n)$.考虑$\textit{meet in the middle}$. 将全集等分分为两部分分 ...

  6. 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)

    A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...

  7. noip模拟30

    \(\color{white}{\mathbb{缀以无尽之群星点点,饰以常青之巨木郁郁,可细斟木纹叶脉,独无可极苍穹之览,名之以:密林}}\) 看完题后感觉整套题都没什么思路,而且基本上整场考试确实是 ...

  8. 【NOIP模拟赛】Drink 二维链表+模拟

    我觉得这道题的主旨应该是模拟,但是如果说他是二维链表的話也不為過.這道題的主體思路就是把原來旋轉點的O(n^2)變成了旋轉邊界的O(n).怎麼旋轉邊界呢,就好像是把原來的那些點都於上下左右四個點連線, ...

  9. NOIP模拟3

    期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...

随机推荐

  1. FastTunnel-内网穿透原理揭秘

    之前写了一篇关于GVP开源项目FastTunnel的一篇介绍 <FastTunnel-开源内网穿透框架>,只简单介绍了使用方法,不少伙伴对其原理表示好奇,今天画抽空了一下其内部实现原理流程 ...

  2. QT从入门到入土(一)——Qt5.14.2安装教程和VS2019环境配置

    引言 24岁的某天,承载着周围人的关心,一路南下.天晴心静,听着斑马,不免对未来有些彷徨.但是呢,人生总要走陌生的路,看陌生的风景,所幸可以听着不变的歌,关心自己的人就那么多.就像是对庸常生活的一次越 ...

  3. 通过原生js实现数据的双向绑定

    通过js实现数据的双向绑定 : Object.defineProperty了解 语法: Object.defineProperty(obj, prop, descriptor) obj 要定义属性的对 ...

  4. 章节1-Prometheus基础(1)

    目录 一.Prometheus安装部署 1. 简介 监控的目的 Prometheus的优势 2. Prometheus工作流程: 2.1 服务端 2.2 客户端 2.3 metrics主要数据类型 3 ...

  5. TestNG基础001

    一.什么是TestNG TestNG是一个强大的测试框架,NG是指Next Generation ,被视为是Junit的升级版本 二.TestNG适用范围 Java单元测试 接口测试 web自动化测试 ...

  6. SpringMVC架构(一)

    SpringMVC架构 1.1Spring web mvc介绍 Spring web mvc和Struts2都属于表现层的框架,它是Spring框架的一部分,我们可以从Spring的整体结构中看得出来 ...

  7. 虚拟机安装RHEL8.0.0

    在VMware Workstations 15.0.0中安装RHEL8.0.0 使用到的软件和主机基本配置 此处宿主机基本硬件配置:i3-7100U 4核,内存:12G 虚拟化软件:VMware Wo ...

  8. C++五十一篇 -- VS2017开发人员新闻无法联网

    参考链接:https://blog.csdn.net/zz1589275782/article/details/88364983 这几天玩了下以前的电脑,本来想更新一下Visual Studio In ...

  9. Windows下删除顽固文件夹

    参考链接: https://www.cnblogs.com/azbane/p/9808802.html 第一步:修改当前文件夹所有者为管理员 takeown /f * /a /r 第二步:修改管理员权 ...

  10. 第五篇--VS2017如何生成Dll文件

    参考资料: https://blog.csdn.net/qq_34097715/article/details/79540933 https://www.cnblogs.com/RascallySna ...