Codeforces 题面传送门 & 洛谷题面传送门

首先注意到 \(\sum\limits_{i=1}^{2n}i=\dfrac{2n(2n+1)}{2}=n(2n+1)\equiv n\pmod{2n}\),也就是说,如果我们能够在每个 pair 找到一个数,使取出的 \(n\) 个数加起来是 \(n\)​ 的倍数,那么后手就有必胜策略,因为如果取出的数之和 \(\bmod 2n=0\) 那么显然符合要求,否则我们这 \(n\) 个数之和 \(\bmod 2n\) 必然等于 \(n\),因此我们可以考虑取个补集,剩余数之和 \(\bmod 2n\) 显然就等于所有数之和减去取出的数之和,也就是 \(2n\) 的倍数了。

因此考虑分情况讨论:如果 \(n\) 是偶数那比较好办,我们考虑当先手,对于所有 \(i\in[1,n]\),将 \(i\) 与 \(i+n\) 分在一组,那么不论后手怎么取,他取出的 \(n\)​ 个数之和 \(\equiv\sum\limits_{i=1}^ni\pmod{n}\),而显然 \(\sum\limits_{i=1}^ni=\dfrac{n(n+1)}{2}=n·\dfrac{n+1}{2}\),后者不是整数,因此左式也不是 \(n\) 的倍数,因此后手无法取出 \(n\) 个数使它们的和为 \(2n\) 的倍数。

接下来考虑 \(n\) 是奇数的情况,显然根据此题的设计,\(n\) 为偶数的情况我们要选择当先手,那 \(n\) 为奇数的情况题目肯定要让我们当后手了,也就是说,我们要对于所有可能的分组情况,从每个 pair 中找出一个数,使它们的和是 \(n\) 的倍数。注意到对于奇数而言,就有 \(\sum\limits_{i=1}^ni\) 为 \(n\) 的倍数了,因此考虑 \(\equiv 1,2,3,\cdots,n\) 的数各取一个,怎么取呢?我们考虑对于所有 \(i\in[1,n]\),连一条 \(i\) 所在的 pair 到 \(i+n\) 所在的 pair 的有向边,权值为 \(0\),编号为 \(i\),同理连一条 \(i+n\) 所在的 pair 到 \(i\) 所在的 pair 的有向边,权值为 \(1\),编号为 \(i\),这样每个点恰好连出两条边,也就是说我们会形成若干个环,我们考虑以任意顺序(顺时针、逆时针皆可),那么在遍历的过程中,如果我们经过编号为 \(i\) 的边时经过的那条边权值为 \(0\),那么我们就选择 \(i\),否则如果经过编号为 \(i\) 的边时,经过的那条边权值为 \(1\),我们就选择 \(i+n\),不难发现这样每组恰好选择一个,而每个编号的边恰好遍历了一次,因此 \(\equiv 1,2,3,\cdots,n\) 的数也都各取一个,因此和肯定是 \(n\) 的倍数。注意,如果最后选出来的数之和 \(\bmod 2n=n\) 那么还需取个补集。

坑点:注意 fflush(stdout)

const int MAXN=5e5;
int n,p[MAXN*2+5],hd[MAXN*2+5],to[MAXN*2+5],nxt[MAXN*2+5],id[MAXN*2+5],ec=1;
void adde(int u,int v,int x){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;id[ec]=x;}
bool vis[MAXN*2+5],book[MAXN*2+5];int ans[MAXN+5];
void dfs(int x,int pre,int st){
// printf("%d %d\n",x,pre);
vis[x]=1;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=id[e];if((e>>1)==(pre>>1)) continue;
book[z*n+(e>>1)]=1;if(y^st) dfs(y,e,st);return;
}
}
int main(){
scanf("%d",&n);
if(~n&1){
puts("First");
for(int i=1;i<=n<<1;i++) printf("%d%c",i%n+1," \n"[i==n<<1]);
fflush(stdout);
} else {
puts("Second");fflush(stdout);ll sum=0;
for(int i=1;i<=n<<1;i++) scanf("%d",&p[i]);
for(int i=1;i<=n;i++) adde(p[i],p[i+n],0),adde(p[i+n],p[i],1);
for(int i=1;i<=n;i++) if(!vis[i]) dfs(i,0,i);
for(int i=1;i<=n<<1;i++) sum+=book[i]*i;
if(sum%(n<<1)){
for(int i=1;i<=n<<1;i++) book[i]^=1;
} for(int i=1;i<=n<<1;i++) if(book[i]) ans[p[i]]=i;
for(int i=1;i<=n;i++) printf("%d%c",ans[i]," \n"[i==n]);
fflush(stdout);
}
return 0;
}

Codeforces 1404D - Game of Pairs(构造)的更多相关文章

  1. Educational Codeforces Round 10 B. z-sort 构造

    B. z-sort 题目连接: http://www.codeforces.com/contest/652/problem/B Description A student of z-school fo ...

  2. Codeforces 707C Pythagorean Triples(构造三条边都为整数的直角三角形)

    题目链接:http://codeforces.com/contest/707/problem/C 题目大意:给你一条边,问你能否构造一个包含这条边的直角三角形且该直角三角形三条边都为整数,能则输出另外 ...

  3. Codeforces 1246D/1225F Tree Factory (构造)

    题目链接 https://codeforces.com/contest/1246/problem/D 题解 首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边 ...

  4. Codeforces - 1202D - Print a 1337-string... - 构造

    https://codeforces.com/contest/1202/problem/D 当时想的构造是中间两个3,然后前后的1和7组合出n,问题就是n假如是有一个比较大的质数因子或者它本身就是质数 ...

  5. Codeforces 743C - Vladik and fractions (构造)

    Codeforces Round #384 (Div. 2) 题目链接:Vladik and fractions Vladik and Chloe decided to determine who o ...

  6. Codeforces 1368E - Ski Accidents(构造+思维)

    Codeforces 题面传送门 & 洛谷题面传送门 神仙构造题(不过可能我构造太烂了?) 首先考虑这个奇奇怪怪的 \(\dfrac{4}{7}\),以及这个每个点出度最多为 \(2\) 的条 ...

  7. Codeforces 1270E - Divide Points(构造+奇偶性)

    Codeforces 题目传送门 & 洛谷题目传送门 显然,直接暴力枚举是不可能的. 考虑将点按横纵坐标奇偶性分组,记 \(S_{i,j}=\{t|x_t\equiv i\pmod{2},y_ ...

  8. codeforces 622C. Optimal Number Permutation 构造

    题目链接 假设始终可以找到一种状态使得值为0, 那么两个1之间需要隔n-2个数, 两个2之间需要隔n-3个数, 两个3之间隔n-4个数. 我们发现两个三可以放到两个1之间, 同理两个5放到两个3之间. ...

  9. Codeforces 1019C Sergey's problem 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1019C.html 题目传送门 - CF1019C 题意 给定一个有 $n$ 个节点 . $m$ 条边的有向 ...

随机推荐

  1. ArrayList和Vector

    ArrayList和Vector ArrayList ArrayList的注意实现 1.ArrayList可以加入null,并且多个 2.ArrayList是由数组来实现数据存储的 3.ArrayLi ...

  2. SingnalR 从开发到生产部署闭坑指南

    前天倒腾了一份[SignalR在react/go技术栈的实践], 步骤和思路大部分是外围框架的应用, 今天趁热打铁, 给一个我总结的SignalR避坑指南. 1.SignalR 默认协商 不管是.NE ...

  3. 力扣 - 剑指 Offer 53 - II. 0~n-1中缺失的数字

    题目 剑指 Offer 53 - II. 0-n-1中缺失的数字 思路1 排序数组找数字使用二分法 通过题目,我们可以得到一个规律: 如果数组的索引值和该位置的值相等,说明还未缺失数字 一旦不相等了, ...

  4. Sequence Model-week2编程题2-Emoji表情生成器

    1. Emoji表情生成器 下面,我们要使用词向量(word vector)来构建一个表情生成器. 你将实现一个模型:输入一句话 (如 "Let's go see the baseball ...

  5. 第一次Scrum Metting

    日期: 2021年4月23日 会议主要内容: 会议主要各自介绍一下所做任务,讨论了前后端接口定义以及服务器购买和接下来任务分配. 一.进度情况 组员 负责 两日已完成的工作 后两日计划完成的工作 工作 ...

  6. Python课程笔记(九)

    本次课程主要学习了Excel和JSON格式的一些读写操作.课程代码 一.Excel数据读写操作 1.安装模块 pip install xlrd pip install xlwt 网不好可以采用三方库: ...

  7. Verilog设计技巧实例及实现

    Verilog设计技巧实例及实现 1 引言 最近在刷HDLBits的过程中学习了一些Verilog的设计技巧,在这里予以整理.部分操作可能降低代码的可读性和Debug的难度,请大家根据实际情况进行使用 ...

  8. Java线程的三种实现方法

    Java多线程详解 线程简介 多任务,多线程 多任务情况中,虽然可以完成,但是实际上,多任务的完成是由一个一个小任务的完成来实现的,也就是说在执行多任务时,不是同时执行多个任务,而是一个时间段内只完成 ...

  9. Linux 限制IP远程连接

    1.允许访问编辑 /etc/hosts.allow 文件,如下: sshd:all:allow                                      #允许所有 IP 远程 ssh ...

  10. k8s入坑之路(7)kubernetes设计精髓List/Watch机制和Informer模块详解

    1.list-watch是什么 List-watch 是 K8S 统一的异步消息处理机制,保证了消息的实时性,可靠性,顺序性,性能等等,为声明式风格的API 奠定了良好的基础,它是优雅的通信方式,是 ...