AT2390 Games on DAG

题意

\(1,2\) 号点各一个石头,每次沿边移动一个石头,不能动者输。求所有连边子集中先手胜的情况。

思路

发现对于两个石头的 SG 函数是独立的,输者两个石头 SG 函数异或值为 0,那么先手胜的情况就是所有情况减去这种情况。

对于所有 SG 函数为 \(v\) 的点,它们必须向 SG 函数小于 \(v\) 的所有点连至少一条边,对大于 \(v\) 的连边没有约束,并且互相不能连边。

所以我们可以枚举当前图的 SG 函数为 0 的点,这样所有其他点都至少向它们连一条边,而它们之间不连边,它们向其他点连边任意。于是对于剩下点的连通子图,我们又可以将所有点的 SG 函数减 1,使它又可以枚举 SG 函数为 0 的点。

于是我们可以 DP。设 \(f_S(1,2\in S)\) 为对于 \(S\) 所有连通子图满足 1,2 SG 函数相等的方案数。

转移时枚举 \(S\) 的子集 \(T\),使 \(1,2\in T\) 或 \(1,2\not \in T\)。对于前者情况,\(T\) 对于 \(S\) 的补集为 SG 函数为 0 的点,从 \(f_T\) 转移即可。对于后者情况,1,2 SG 函数为 0,\(T\) 中的边随便连。

DP 前预处理出所有集合对每个点的连边条数。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=15,mod=1e9+7;
int n,m,a[maxn][maxn],f[1<<maxn],c[1<<maxn][maxn],pow[maxn*maxn];
inline void work(){
n=read(),m=read();
pow[0]=1;for(int i=1;i<=m;i++) pow[i]=(pow[i-1]<<1)%mod;
for(int x,y,i=1;i<=m;i++) x=read()-1,y=read()-1,a[x][y]=1;
for(int d=1;d<1<<n;d++){
int j=0;
while(~d>>j&1)++j;
for(int x=0;x<n;x++) c[d][x]=c[d^1<<j][x]+a[x][j];
}
for(int d=0;d<1<<n;d++) if((d&3)==3){
f[d]=1;
for(int t=d&(d-1);t;--t&=d) if((t&1)==(t>>1&1)) if(t&1){
int res=1;
for(int i=0;i<n;i++) if(t>>i&1) res=1ll*res*(pow[c[d^t][i]]-1)%mod;
else if(d>>i&1) res=1ll*res*pow[c[t][i]]%mod;
f[d]=(f[d]+1ll*res*f[t])%mod;
}else{
int res=1;
for(int i=0;i<n;i++) if(t>>i&1) res=1ll*res*(pow[c[d^t][i]]-1)%mod*pow[c[t][i]]%mod;
else if(d>>i&1) res=1ll*res*pow[c[t][i]]%mod;
f[d]=(f[d]+res)%mod;
}
}
printf("%d\n",(pow[m]-f[(1<<n)-1]+mod)%mod);
}
}
signed main(){
star::work();
return 0;
}

AT2390 Games on DAG的更多相关文章

  1. 题解 AT2390 【Games on DAG】

    题目大意 给出一个n个点m条边的DAG,记为G. 可以删掉若干条边成为G′,显然有 2m 种不同的G′. 连边保证:若有 (xi →yi​) 边,则 xi​ < yi . 初始点1和点2有一个标 ...

  2. AT2390-[AGC016F]Games on DAG【状压dp,SG函数】

    正题 题目链接:https://www.luogu.com.cn/problem/AT2390 解题思路 \(n\)个点的\(DAG\),\(m\)条边可有可无,\(1\)和\(2\)上有石头.求有多 ...

  3. AGC 016 F - Games on DAG(状压dp)

    题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...

  4. AtCoder Grand Contest 016 F - Games on DAG

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_f 题目大意: 给定一个\(N\)点\(M\)边的DAG,\(x_i\)有边连向\(y_i\) ...

  5. Atcoder Grand Contest 016 F - Games on DAG(状压 dp)

    洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...

  6. Solution -「AGC 016F」Games on DAG

    \(\mathcal{Description}\)   Link.   给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子.两人博弈,轮流移动其中一枚棋 ...

  7. DP及其优化

    常见DP模型及其构造 序列DP ARC074 RGB Sequence 题意 给你一个长度为 \(n\) 的序列和 \(m\) 组约束条件,每组条件形如 \(l_i,r_i,x_i\),表示序列上的 ...

  8. 【AtCoder】AGC016

    A - Shrinking 用每个字母模拟一下就行 #include <bits/stdc++.h> #define fi first #define se second #define ...

  9. AGC016题解

    呼我竟然真的去刷了016QwQ[本来以为就是个flag的233] 感觉AGC题目写起来都不是很麻烦但是确实动脑子qvq[比较适合训练我这种没脑子选手] 先扔个传送门:点我 A.Shrinking 题意 ...

随机推荐

  1. Docker与k8s的恩怨情仇(一)—成为PaaS前浪的Cloud Foundry

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 大家在工作中或许或多或少都接触过Docker,那你知道Docker以及容器化背后的原理到底是什么吗? 容器化 ...

  2. 停车场事故频频,AI 达人将摄像头变身安全卫士

    2021 年 2 月,"新内容 新交互" 全球视频云创新挑战赛启幕.本次大赛由英特尔联合阿里云主办,与优酷战略技术合作,天池平台和阿里云视频云团队共同承办.大赛自开赛以来,吸引了全 ...

  3. Linux命令大全之查看登陆用户信息

    1,w +回车 2.who +回车 3.last+回车 4.lastlog+回车

  4. solidity 小案例 收费站

    solidity IDE下载地址 https://pan.baidu.com/s/1cY8VgDqB9Wt9VzK-Nocbyw 代码案例: pragma solidity ^0.4.0; //创建合 ...

  5. Jquery手机点击其他地方隐藏控件问题

    因为不太懂mui的底部导航栏的操作,所以自己写了用很普通的方法实现手机底部导航栏,遇到了很多问题.比如:要实现点击底部菜单栏上某一个菜单,显示子菜单,然后点击手机空白处,隐藏菜单. 实现方法是: // ...

  6. 暑假自学java第七天

    1,Object类: 任何类的父类都是Object 任何子类的对象都可以赋值给父类的引用.任何类的所有实例都可以用Object来代替 (3条消息) java中的Object类_iqqcode-CSDN ...

  7. 解决Windows Server 2012 在VMware ESXi中经常自动断网问题

    最近一些开发人员反映他们使用的 Windows server2012 R2 虚拟机过段时间就远程连接不上了,ping也不通(已关闭防火墙),我们登录ESXi发现,Windows Server 的网络图 ...

  8. hdu 1145(Sticks) DFS剪枝

    Sticks Problem Description George took sticks of the same length and cut them randomly until all par ...

  9. C++实现KDTree

    简介   k-d树(k-dimensional),是一种分割k维数据空间的数据结构(对数据点在k维空间中划分的一种数据结构),主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索). 举例    ...

  10. 关于vector.size()的一些常见错误总结

    1. 问题引入 通过查看[https://www.cplusplus.com/reference/vector/vector/] 的vector.size()说明,即 member type defi ...