Area of Simple Polygons
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3412   Accepted: 1763

Description

There are N, 1 <= N <= 1,000 rectangles in the 2-D xy-plane. The four sides of a rectangle are horizontal or vertical line segments. Rectangles are defined by their lower-left and upper-right corner points. Each corner point is a pair of two nonnegative integers in the range of 0 through 50,000 indicating its x and y coordinates.

Assume that the contour of their union is defi ned by a set S of
segments. We can use a subset of S to construct simple polygon(s).
Please report the total area of the polygon(s) constructed by the subset
of S. The area should be as large as possible. In a 2-D xy-plane, a
polygon is defined by a finite set of segments such that every segment
extreme (or endpoint) is shared by exactly two edges and no subsets of
edges has the same property. The segments are edges and their extremes
are the vertices of the polygon. A polygon is simple if there is no
pair of nonconsecutive edges sharing a point.

Example: Consider the following three rectangles:

rectangle 1: < (0, 0) (4, 4) >,

rectangle 2: < (1, 1) (5, 2) >,

rectangle 3: < (1, 1) (2, 5) >.

The total area of all simple polygons constructed by these rectangles is 18.

Input

The
input consists of multiple test cases. A line of 4 -1's separates each
test case. An extra line of 4 -1's marks the end of the input. In each
test case, the rectangles are given one by one in a line. In each line
for a rectangle, 4 non-negative integers are given. The first two are
the x and y coordinates of the lower-left corner. The next two are the x
and y coordinates of the upper-right corner.

Output

For each test case, output the total area of all simple polygons in a line.

Sample Input

0 0 4 4
1 1 5 2
1 1 2 5
-1 -1 -1 -1
0 0 2 2
1 1 3 3
2 2 4 4
-1 -1 -1 -1
-1 -1 -1 -1 

Sample Output

18
10 题意:矩形面积交.
只用了离散化没用线段树也 47MS AC。。就是耗费的空间大了点,,不过将vis数组开成bool类型应该可以少很多空间..
///离散化
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <cmath>
using namespace std;
const int N = ;
struct Rec{
int x1,y1,x2,y2;
}rec[N];
int x[N],y[N];
int vis[N][N];
int k,t;
int binary1(int value){
int mid,l=,r=k-;
while(l<r){
mid = (l+r)>>;
if(x[mid]==value) return mid;
if(x[mid]<value) l = mid+;
else r = mid-;
}
return l;
}
int binary2(int value){
int mid,l=,r=k-;
while(l<r){
mid = (l+r)>>;
if(y[mid]==value) return mid;
if(y[mid]<value) l = mid+;
else r = mid-;
}
return l;
}
void input(){
int x1,y1,x2,y2;
while(true){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
if(x1==-&&x2==-&&y1==-&&y2==-) break;
rec[t].x1 = x1,rec[t].y1 = y1,rec[t].x2=x2,rec[t++].y2 = y2;
x[k] = x1,y[k++] = y1;
x[k] = x2,y[k++] = y2;
}
sort(x,x+k);
sort(y,y+k);
}
void solve(){
int t1,t2,t3,t4;
for(int i=;i<t;i++){
t1 = binary1(rec[i].x1);
t2 = binary1(rec[i].x2);
t3 = binary2(rec[i].y1);
t4 = binary2(rec[i].y2);
for(int j=t1;j<t2;j++){
for(int l = t3;l<t4;l++){
vis[j][l] = ;
}
}
}
int area = ;
for(int i=;i<k;i++){
for(int j=;j<k;j++){
area+=vis[i][j]*(x[i+]-x[i])*(y[j+]-y[j]);
}
}
printf("%d\n",area);
}
int main()
{
int x1,y1,x2,y2;
while(scanf("%d%d%d%d",&x1,&y1,&x2,&y2)!=EOF){
if(x1==-&&x2==-&&y1==-&&y2==-) break;
memset(vis,,sizeof(vis));
k=,t=;
rec[t].x1 = x1,rec[t].y1 = y1,rec[t].x2=x2,rec[t++].y2 = y2;
x[k] = x1,y[k++] = y1;
x[k] = x2,y[k++] = y2;
input();
solve();
}
return ;
}

poj 1389(离散化+计算几何)的更多相关文章

  1. POJ 1389 Area of Simple Polygons 扫描线+线段树面积并

    ---恢复内容开始--- LINK 题意:同POJ1151 思路: /** @Date : 2017-07-19 13:24:45 * @FileName: POJ 1389 线段树+扫描线+面积并 ...

  2. poj 1151(离散化+矩形面积并)

    题目链接:http://poj.org/problem?id=1151 关于离散化,这篇博客讲的很好:http://www.cppblog.com/MiYu/archive/2010/10/15/12 ...

  3. POJ 1410 Intersection (计算几何)

    题目链接:POJ 1410 Description You are to write a program that has to decide whether a given line segment ...

  4. 【POJ 1389】Area of Simple Polygons(线段树+扫描线,矩形并面积)

    离散化后,[1,10]=[1,3]+[6,10]就丢了[4,5]这一段了. 因为更新[3,6]时,它只更新到[3,3],[6,6]. 要么在相差大于1的两点间加入一个值,要么就让左右端点为l,r的线段 ...

  5. POJ 1106 Transmitters(计算几何)

    题目链接 切计算几何,感觉计算几何的算法还不熟.此题,枚举线段和圆点的直线,平分一个圆 #include <iostream> #include <cstring> #incl ...

  6. poj 2507Crossed ladders <计算几何>

    链接:http://poj.org/problem?id=2507 题意:哪个直角三角形,一直角边重合, 斜边分别为 X, Y, 两斜边交点高为 C , 求重合的直角边长度~ 思路: 设两个三角形不重 ...

  7. TOYS - POJ 2318(计算几何,叉积判断)

    题目大意:给你一个矩形的左上角和右下角的坐标,然后这个矩形有 N 个隔板分割成 N+1 个区域,下面有 M 组坐标,求出来每个区域包含的坐标数.   分析:做的第一道计算几何题目....使用叉积判断方 ...

  8. D - Mayor's posters POJ - 2528 离散化+线段树 区间修改单点查询

    题意 贴海报 最后可以看到多少海报 思路 :离散化大区间  其中[1,4] [5,6]不能离散化成[1,2] [2,3]因为这样破坏了他们的非相邻关系 每次离散化区间 [x,y]时  把y+1点也加入 ...

  9. POJ 1654 Area 计算几何

    #include<stdio.h> #include<string.h> #include<iostream> #include<math.h> usi ...

随机推荐

  1. OVGap 原生与JS交互

    源代码:https://github.com/windshg/OVGap OVGap:一个轻量级的类库,能够让iOS应用和远程网页的 Javascript 代码进行通信,也就是说,远程的 Javasc ...

  2. 【Max Points on a Line 】cpp

    题目: Given n points on a 2D plane, find the maximum number of points that lie on the same straight li ...

  3. loadrunner破解出现“license security violation,Operation is not allowed”的错误提示

    1.关闭loadrunner,将破解文件(“lm70.dll”.“mlr5lprg.dll”)放置在LoadRunner\bin下面 2.以管理员身份运行loadrunner,在CONFUGURATI ...

  4. python的inspect模块

    一.type and members 1. inspect.getmembers(object[, predicate]) 第二个参数通常可以根据需要调用如下16个方法: 返回值为object的所有成 ...

  5. Oracle 自增写给自己的

    首先咱先建一张表: CREATE TABLE example( ID Number(4) NOT NULL PRIMARY KEY, NAME VARCHAR(25), PHONE VARCHAR(1 ...

  6. Windows下python 3 pip程序升级异常问题及pip常用命令

    最近在学习,Selenium+Python自动化,在安装selenium包的时候,出现无法安装的情况,并提示Pip有新的版本,我的版本太低了.然后安装系统提示操作,pip升级也出现异常,报错timeo ...

  7. Windows7中如何让python2和python3共存并使用pip

    1.下载安装python2和python3 分别下载python2.7.exe.python3.6.exe并安装到C盘.E盘(如图)     2.配置环境变量 打开“系统变量”中的path文本框(如图 ...

  8. An internal error occurred during: "Launching on Tomcat 7.x"

    1.首先关闭MyEclipse工作空间.2.然后删除工作空间下的文件.“MyEclipse10\workspace.metadata.plugins\org.eclipse.core.runtime. ...

  9. Linux下通过tcpdump抓包工具获取信息

    介绍 tcpdump是网络数据包截获分析工具.支持针对网络层.协议.主机.网络或端口的过滤.并提供and.or.not等逻辑语句帮助去除无用的信息. tcpdump - dump traffic on ...

  10. python基础实践(四)

    # -*- coding:utf-8 -*-# Author:sweeping-monkwhy = "为什么要组织列表?"print(why)Chicken_soup = &quo ...