BZOJ3028: 食物
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3028
题解:列出母函数乘起来化简之后再展开,用插板法即可。
代码:
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 1000+5 #define maxm 200000+5 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go) #define for5(n,m) for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) #define mod 10007 #define lch k<<1,l,mid #define rch k<<1|1,mid+1,r using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
int n,m;
char s[maxn]; int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); scanf("%s",s);n=strlen(s);
for0(i,n-)m=(m*+s[i]-'')%mod;
cout<<m*(m+)%mod*(m+)%mod*%mod<<endl; return ; }
BZOJ3028: 食物的更多相关文章
- BZOJ3028 食物 (生成函数)
首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...
- bzoj3028食物
http://www.lydsy.com/JudgeOnline/problem.php?id=3028 好吧,这是我第一道生成函数的题目. 先搞出各种食物的生成函数: 汉堡:$1+x^2+x^4+. ...
- BZOJ3028食物——生成函数+泰勒展开
题目描述 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些 ...
- BZOJ3028 食物(生成函数)
显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+…… ...
- 2018.12.30 bzoj3028: 食物(生成函数)
传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21 ...
- BZOJ3028 食物 和 LOJ6261 一个人的高三楼
总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...
- bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明
关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明对于第i项,假设为5x^5=x^0*x^5x^5=x^1*x^4x^5=x^2*x^3........也就是说 ...
- BZOJ3028: 食物(生成函数)
题意 链接 Sol 生成函数入门题. 对每个物品分别列一下,化到最后是\(\frac{x}{(1-x)^4}\) 根据广义二项式定理,最后答案是\(C_{(N - 1) + 4 - 1}^{4-1} ...
- 母函数入门笔记(施工中…
定义:对于一个数列,它的母函数(即生成函数)为 为了对这个准确求值,我们设 举一个简单的例子 例1 对于数列 他的生成函数为 ,那么应用一下等比数列求和公式 这里由于 所以当时 那么 例 ...
随机推荐
- PHP-Java-Bridge的使用(平安银行支付功能专版)
去年做平安银行的时候,用到了PHP-Java-Bridge,后来写了一篇博客记录使用PHP-Java-Bridge的一些心得(连接:http://my.oschina.net/kenblog/blog ...
- Delphi美化界面 转载
手头的项目做的差不多了,交给客户,结果给出的结论是界面太难看了,至少要做成像QQ类似的界面.(目前是QQ2009界面确实还是不错的,本人也非常喜欢). 1.透明问题. 要重新调整界面确实很麻烦,以前用 ...
- JSP 页面打印
<HTML><HEAD><TITLE>javascript打印-打印页面设置-打印预览代码</TITLE> <META http-equiv=Co ...
- Windows 7 常用快捷键 命令
Win+E: 打开新的windows资源浏览器 Win+F:搜索文件或文件夹 Win+R:打开运行窗口 Win + D:显示桌面 Win + M:最小化所有窗口 Ctrl+Shift+N: 新建文件 ...
- MYSQL - ORDER BY & LIMIT
http://stackoverflow.com/questions/4708708/mysql-order-by-limit
- Inlinehook PspCreateProcess
InineHook通过修改函数指令实现,此次以内核层的PspCreateProcess()为例. 本来是想写NtCreateProcess()的Inlinehook,但是想到PCHunter对于SSD ...
- lintcode:数字组合 II
数字组合 II 给出一组候选数字(C)和目标数字(T),找出C中所有的组合,使组合中数字的和为T.C中每个数字在每个组合中只能使用一次. 注意事项 所有的数字(包括目标数字)均为正整数. 元素组合(a ...
- CentOS7修改服务器主机名方法
CentOS7下修改主机名 第一种:hostname 主机名 01.hostname 主机名称 这种方式,只能修改临时的主机名,当重启机器后,主机名称又变回来了. 第二种:hostnamectl se ...
- 自己用反射写的一个request.getParameter工具类
适用范围:当我们在jsp页面需要接收很多值的时候,如果用request.getParameter(属性名)一个一个写的话那就太麻烦了,于是我想是 否能用反射写个工具类来简化这样的代码,经过1个小时的代 ...
- SSIS ->> 通过Checkoints实现SSIS的包重启(Package Restartability Fullfilled By Checkoints)
Checkpoints是实现SSIS包重载的基础.它的原理是把当前运行环境的配置.变量以及到了包运行到哪一步和哪一步失败这些信息写入到一个文件中.而且有一点很重要,Checkpoint只发生在Cont ...