BZOJ3028: 食物
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3028
题解:列出母函数乘起来化简之后再展开,用插板法即可。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1000+5
#define maxm 200000+5
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define for4(i,x) for(int i=head[x],y=e[i].go;i;i=e[i].next,y=e[i].go)
#define for5(n,m) for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)
#define mod 10007
#define lch k<<1,l,mid
#define rch k<<1|1,mid+1,r
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m;
char s[maxn];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
scanf("%s",s);n=strlen(s);
for0(i,n-)m=(m*+s[i]-'')%mod;
cout<<m*(m+)%mod*(m+)%mod*%mod<<endl;
return ;
}
BZOJ3028: 食物的更多相关文章
- BZOJ3028 食物 (生成函数)
首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...
- bzoj3028食物
http://www.lydsy.com/JudgeOnline/problem.php?id=3028 好吧,这是我第一道生成函数的题目. 先搞出各种食物的生成函数: 汉堡:$1+x^2+x^4+. ...
- BZOJ3028食物——生成函数+泰勒展开
题目描述 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些 ...
- BZOJ3028 食物(生成函数)
显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+…… ...
- 2018.12.30 bzoj3028: 食物(生成函数)
传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21 ...
- BZOJ3028 食物 和 LOJ6261 一个人的高三楼
总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...
- bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明
关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明对于第i项,假设为5x^5=x^0*x^5x^5=x^1*x^4x^5=x^2*x^3........也就是说 ...
- BZOJ3028: 食物(生成函数)
题意 链接 Sol 生成函数入门题. 对每个物品分别列一下,化到最后是\(\frac{x}{(1-x)^4}\) 根据广义二项式定理,最后答案是\(C_{(N - 1) + 4 - 1}^{4-1} ...
- 母函数入门笔记(施工中…
定义:对于一个数列,它的母函数(即生成函数)为 为了对这个准确求值,我们设 举一个简单的例子 例1 对于数列 他的生成函数为 ,那么应用一下等比数列求和公式 这里由于 所以当时 那么 例 ...
随机推荐
- 100个经典的C算法
1.题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔 子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数 为多少? #include<stdio.h&g ...
- NodeJS模块、包、NPM
1.NodeJS模块 每一个Nodejs都是一个NodeJS模块,包括JS文件,JSON文本文件,二进制模块文件. a.模块的应用 新建一个文件mytest. ...
- poj 1986
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 8638 Accepted: 3032 ...
- BZOJ 2424: [HAOI2010]订货 费用流
2424: [HAOI2010]订货 Description 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月 ...
- JDBC第四次学习
传智播客李勇老师的JDBC系列学习终于接近尾声了,好开心,能学到这么多的东西,还不赶快记录下来,留待以后回味! 如何使用开源项目DBCP(实际项目中常用) 主要分为三个步骤: 使用DBCP必须用 ...
- Android 图片异步加载的体会,SoftReference已经不再适用
在网络上搜索Android图片异步加载的相关文章,目前大部分提到的解决方案,都是采用Map<String, SoftReference<Drawable>> 这样软引用的 ...
- Android核心分析之二十二Android应用框架之Activity
3 Activity设计框架 3.1 外特性空间的Activity 我们先来看看,android应用开发人员接触的外特性空间中的Activity,对于AMS来讲,这个Activity就是客服端的 ...
- Android核心分析之十六Android电话系统-概述篇
Android电话系统之概述篇 首先抛开Android的一切概念来研究一下电话系统的最基本的描述.我们的手机首先用来打电话的,随后是需要一个电话本,随后是PIM,随后是网络应用,随后是云计算,随后是想 ...
- 如何搭建配置php开发环境
PHP的配置 1.打开解压后的C:\Program Files (x86)\php-5.3.5文件夹 1 将php.ini-development文件并更改名称为php.ini(留个备份,好习惯) 2 ...
- Android百度地图开发05之公交信息检索 + 路线规划
在上一篇blog中介绍过POI检索的使用,本篇blog主要介绍公交信息检索和线路规划的内容. 公交信息检索 实际上,公交信息检索与POI检索.在线建议检索非常相似,也是把你需要检索的信息发送给百度地图 ...