先不考虑限制,那么有dp[i]表示i元钱的方案数。

然后考虑限制,发现可以容斥。

其实整个题就是两个容斥原理。感觉出的蛮好的。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 100500
using namespace std;
long long f[maxn],c[],d[],n,s,ans;
void pre_dp()
{
f[]=;
for (long long i=;i<=maxn-;i++)
{
for (long long j=;j<=;j++)
if (i>=c[j]) f[i]+=f[i-c[j]];
for (long long j=;j<=;j++)
for (long long k=j+;k<=;k++)
if (i>=c[j]+c[k]) f[i]-=f[i-c[j]-c[k]];
for (long long j=;j<=;j++)
for (long long k=j+;k<=;k++)
for (long long l=k+;l<=;l++)
if (i>=c[j]+c[k]+c[l]) f[i]+=f[i-c[j]-c[k]-c[l]];
if (i>=c[]+c[]+c[]+c[]) f[i]-=f[i-c[]-c[]-c[]-c[]];
}
}
void work()
{
ans=;ans+=f[s];
for (long long i=;i<=;i++) if (s>=d[i]*c[i]) ans-=f[s-d[i]*c[i]];
for (long long i=;i<=;i++)
for (long long j=i+;j<=;j++)
if (s>=d[i]*c[i]+d[j]*c[j]) ans+=f[s-d[i]*c[i]-d[j]*c[j]];
for (long long i=;i<=;i++)
for (long long j=i+;j<=;j++)
for (long long k=j+;k<=;k++)
if (s>=d[i]*c[i]+d[j]*c[j]+d[k]*c[k]) ans-=f[s-d[i]*c[i]-d[j]*c[j]-d[k]*c[k]];
if (s>=d[]*c[]+d[]*c[]+d[]*c[]+d[]*c[]) ans+=f[s-(d[]*c[]+d[]*c[]+d[]*c[]+d[]*c[])];
printf("%lld\n",ans);
}
int main()
{
for (long long i=;i<=;i++) scanf("%lld",&c[i]);
scanf("%lld",&n);
pre_dp();
for (long long i=;i<=n;i++)
{
for (long long j=;j<=;j++) {scanf("%lld",&d[j]);d[j]++;}
scanf("%lld",&s);
work();
}
return ;
}

BZOJ 1042 硬币购物的更多相关文章

  1. [BZOJ]1042 硬币购物(HAOI2008)

    失踪OJ回归. 小C通过这道题mark一下容斥一类的问题. Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s ...

  2. BZOJ 1042 硬币购物(完全背包+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d ...

  3. BZOJ 1042 硬币购物(背包DP+容斥原理)

    可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE. 因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数. 我们不妨不考虑 ...

  4. 【BZOJ】【1042】【HAOI2008】硬币购物

    DP+容斥原理 sigh……就差一点…… 四种硬币的数量限制就是四个条件,满足条件1的方案集合为A,满足条件2的方案集合为B……我们要求的就是同时满足四个条件的方案集合$A\bigcap B\bigc ...

  5. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  6. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

  7. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  8. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  9. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

随机推荐

  1. alpha发布(技术随笔)

    昨天是班级里面每个小组要进行alpha演示,大家都很努力的去做自己的项目.我们nice!组没有演示自己的项目,只一点很惭愧,身为组员没有协助组长按时完成项目,这一点自己也感觉很抱歉,虽然每天感觉自己都 ...

  2. AngularJS directive入门例子

    这是<AngularJS>这本书里面提供的一个例子: JS代码: var expanderModule=angular.module('expanderModule', []) expan ...

  3. dll和ocx比较

    ActiveX,OLE是基于COM的一种应用,其文件后缀一般以dll和ocx结尾:ocx作为一种特殊的dll文件,具有一定的用户界面和事件响应,而dll文件只是方法和属性的集合. 一.关于DLL的介绍 ...

  4. 最新版Intel HD4000 桌面右键菜单去除方法

    网上找了一圈都提示找不到指定模块,后来发现它换dll了 regsvr32 /u igfxDTCM.dll

  5. Swift - 自动布局库SnapKit的使用详解4(样例1:实现一个登录页面)

    前面的几篇文章讲解了自动布局库SnapKit的使用方法.本文通过一个完整的样例(登录页面)来演示在实际项目中如何使用SnapKit来实现自动化布局的.1,效果图如下

  6. 使用MediaPlayer和SurfaceView播放视频

    使用VideoView播放视频简单.方便,丹有些早期的开发者更喜欢使用MediaPlayer来播放视频,但由于MediaPlayer主要用于播放音频,因此它没有提供图像输出界面,此时 需要借助于Sur ...

  7. eclipse隐藏菜单栏实现全部酷黑主题

    将eclipse升级到了最新版的neon,将主题颜色设置为了dark,瞬间高大上了很多,唯独菜单栏还是白色的,很刺眼.况且菜单栏不是很常用,所以我们可以将菜单栏隐藏起来,以达到全部黑色的效果. 步骤: ...

  8. TopCoder SRM 582 ColorfulBuilding

    DP  思路是三维,但是时间肯定会超时,需要根据其特殊性质加两个标记数组,优化成二维. 刚开始想了N久N久,没感觉,还是动手画了一下才有用呀,意淫再久,不如动手呀. 代码: #include<i ...

  9. IOC(控制反转和依赖注入)之Autofac

    Autofac是一款IOC框架,比较于其他的IOC框架,如Spring.NET,Unity,Castle等等所包含的,它很轻量级性能上也是很高的.于是,今天抽空研究了下它.下载地址:http://co ...

  10. ASP.NET MVC学习之路由篇(2)

    7.解决与物理路径的冲突 当发送一个请求至ASP.NET MVC时,其实会检查网站中存不存在这个请求的物理路径文件,如果存在的话,就会直接将这个物理文件返回.但是有时候我们需要它执行控制器的某个方法, ...