Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架。这篇是介绍Spark Structured Streaming的基本开发方法。以Spark 自带的example进行测试和介绍,其为"StructuredNetworkWordcount.scala"文件。

1. Quick Example

  由于我们是在单机上进行测试,所以需要修单机运行模型,修改后的程序如下:

package org.apache.spark.examples.sql.streaming

import org.apache.spark.sql.SparkSession

/**

* Counts words in UTF8 encoded, '\n' delimited text received from the network.

*

* Usage: StructuredNetworkWordCount <hostname> <port>

* <hostname> and <port> describe the TCP server that Structured Streaming

* would connect to receive data.

*

* To run this on your local machine, you need to first run a Netcat server

* `$ nc -lk 9999`

* and then run the example

* `$ bin/run-example sql.streaming.StructuredNetworkWordCount

* localhost 9999`

*/

object StructuredNetworkWordCount {

def main(args: Array[String]) {

if (args.length < 2) {

System.err.println("Usage: StructuredNetworkWordCount <hostname> <port>")

System.exit(1)

}

val host = args(0)

val port = args(1).toInt

val spark = SparkSession

.builder

.appName("StructuredNetworkWordCount")

.master("local[*]")

.getOrCreate()

import spark.implicits._

// Create DataFrame representing the stream of input lines from connection to host:port

val lines = spark.readStream

.format("socket")

.option("host", host)

.option("port", port)

.load()

// Split the lines into words

val words = lines.as[String].flatMap(_.split(" "))

// Generate running word count

val wordCounts = words.groupBy("value").count()

// Start running the query that prints the running counts to the console

val query = wordCounts.writeStream

.outputMode("complete")

.format("console")

.start()

query.awaitTermination()

}

}

2. 剖析

  对于上述所示的程序,进行如下的解读和分析:

2.1 数据输入

  在创建SparkSessiion对象之后,需要设置数据源的类型,及数据源的配置。然后就会数据源中源源不断的接收数据,接收到的数据以DataFrame对象存在,该类型与Spark SQL中定义类型一样,内部由Dataset数组组成。

如下程序所示,设置输入源的类型为socket,并配置socket源的IP地址和端口号。接收到的数据流存储到lines对象中,其类型为DataFarme。

// Create DataFrame representing the stream of input lines from connection to host:port

val lines = spark.readStream

.format("socket")

.option("host", host)

.option("port", port)

.load()

2.2 单词统计

  如下程序所示,首先将接受到的数据流lines转换为String类型的序列;接着每一批数据都以空格分隔为独立的单词;最后再对每个单词进行分组并统计次数。

// Split the lines into words

val words = lines.as[String].flatMap(_.split(" "))

// Generate running word count

val wordCounts = words.groupBy("value").count()

2.3 数据输出

通过DataFrame对象的writeStream方法获取DataStreamWrite对象,DataStreamWrite类定义了一些数据输出的方式。Quick example程序将数据输出到控制终端。注意只有在调用start()方法后,才开始执行Streaming进程,start()方法会返回一个StreamingQuery对象,用户可以使用该对象来管理Streaming进程。如上述程序调用awaitTermination()方法阻塞接收所有数据。

3. 异常

3.1 拒绝连接

  当直接提交编译后的架包时,即没有启动"nc –lk 9999"时,会出现图 11所示的错误。解决该异常,只需在提交(spark-submit)程序之前,先启动"nc"命令即可解决,且不能使用"nc –lk localhost 9999".

图 11

3.2 NoSuchMethodError

  当通过mvn打包程序后,在命令行通过spark-submit提交架包,能够正常执行,而通过IDEA执行时会出现图 12所示的错误。

图 12

  出现这个异常,是由于项目中依赖的Scala版本与Spark编译的版本不一致,从而导致出现这种错误。图 13和图 14所示,Spark 2.10是由Scala 2.10版本编译而成的,而项目依赖的Scala版本是2.11.8,从而导致出现了错误。

图 13

图 14

  解决该问题,只需在项目的pom.xml文件中指定与spark编译的版本一致,即可解决该问题。如图 15所示的执行结果。

图 15

4. 参考文献

Spark Structured streaming框架(1)之基本使用的更多相关文章

  1. Spark Structured Streaming框架(3)之数据输出源详解

    Spark Structured streaming API支持的输出源有:Console.Memory.File和Foreach.其中Console在前两篇博文中已有详述,而Memory使用非常简单 ...

  2. Spark Structured Streaming框架(1)之基本用法

     Spark Struntured Streaming是Spark 2.1.0版本后新增加的流计算引擎,本博将通过几篇博文详细介绍这个框架.这篇是介绍Spark Structured Streamin ...

  3. Spark Structured Streaming框架(2)之数据输入源详解

    Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...

  4. Spark Structured Streaming框架(2)之数据输入源详解

    Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick ex ...

  5. Spark Structured Streaming框架(5)之进程管理

    Structured Streaming提供一些API来管理Streaming对象.用户可以通过这些API来手动管理已经启动的Streaming,保证在系统中的Streaming有序执行. 1. St ...

  6. Spark Structured Streaming框架(4)之窗口管理详解

    1. 结构 1.1 概述 Structured Streaming组件滑动窗口功能由三个参数决定其功能:窗口时间.滑动步长和触发时间. 窗口时间:是指确定数据操作的长度: 滑动步长:是指窗口每次向前移 ...

  7. DataFlow编程模型与Spark Structured streaming

    流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理:对应的批量计算,更准确的说法是 ...

  8. Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)

    背景: 需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新 ...

  9. Spark2.2(三十八):Spark Structured Streaming2.4之前版本使用agg和dropduplication消耗内存比较多的问题(Memory issue with spark structured streaming)调研

    在spark中<Memory usage of state in Spark Structured Streaming>讲解Spark内存分配情况,以及提到了HDFSBackedState ...

随机推荐

  1. [补] 如何在windows下用IDA优雅调试ELF

    在windows下如何用IDA优雅调试ELF brief: 构建一个IDA-linux_server-docker镜像,优雅地IDA远程调试 使用传统虚拟机来运行一个linux程序就得跑一个完整的li ...

  2. 构建高并发&高可用&安全的IT系统-高并发部分

    什么是高并发? 狭义来讲就是你的网站/软件同一时间能承受的用户数量有多少 相关指标有 并发数:对网站/软件同时发起的请求数,一般也可代表实际的用户 每秒响应时间:常指一次请求到系统正确响的时间(以秒为 ...

  3. UglifyJS-- 对你的js做了什么

    也不是闲着没事去看压缩代码,但今天调试自己代码的时候发现有点意思.因为是自己写的,虽然压缩了,格式化之后还是很好辨认.当然作为min的首要准则不是可读性,而是精简.那么它会尽量的缩短代码,尽量的保持一 ...

  4. node.js fs.open 和 fs.write 读取文件和改写文件

    Node.js的文件系统的Api //公共引用 var fs = require('fs'), path = require('path'); 1.读取文件readFile函数 //readFile( ...

  5. IT人不要一直做技术

    我现在是自己做,但我此前有多年在从事软件开发工作,当回过头来想一想自己,觉得特别想对那些初学JAVA/DOT.NET技术的朋友说点心里话,希望你们能从我们的体会中,多少受点启发(也许我说的不好,你不赞 ...

  6. GateSvr的设计2

    我们的目标是:1.业务Server集群部署,从网关发来的请求处理,程序自动找一台空闲的业务Server来处理这个请求,并将结果异步分发到服务网关,从而Push给客户端:2.一套业务Server挂了不会 ...

  7. Java生成MD5加密字符串代码实例

    这篇文章主要介绍了Java生成MD5加密字符串代码实例,本文对MD5的作用作了一些介绍,然后给出了Java下生成MD5加密字符串的代码示例,需要的朋友可以参考下   (1)一般使用的数据库中都会保存用 ...

  8. ajax分页效果、分类联动、搜索功能

    一.使用smarty+ajax+php实现无刷新分页效果 效果图 <!DOCTYPE html> <html lang="en"> <head> ...

  9. 小程序server-3-搭建WebSocket 服务

    小程序server-3-搭建WebSocket 服务: 1.安装 Node 模块 使用 ws 模块来在服务器上支持 WebSocket 协议,下面使用 NPM 来安装: cd /var/www/wxp ...

  10. 关于Visual Studio调试 无效指针提示

    前几天遇到了这个问题,编译没问题,直接运行没问题 但是一调试,会提示无效指针,(按Ctrl+F5可以运行,但按F5提示无效指针) 只要这样,新建C:\ProgramData\Microsoft Vis ...