Description

  对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax
2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给
出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先
x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

  第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M
行每行一个数L,表示要询问长度为L的上升序列。N<=10000,M<=1000

Output

  对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.

Sample Input

6
3 4 1 2 3 6
3
6
4
5

Sample Output

Impossible
1 2 3 6
Impossible
注意是编号的字典序最小
那么从前往后dp就会出现这样的情况
就是不知道如何选才能保证长度为L的最优解且字典序最小(特别的是f[i]>L时)
可以从后往前DP,f[i]表示i开头的最长上升序列长度
如果存在最小的i,f[i]>=L,那么显然i是一个解
同样,存在最小的j,f[j]>=L-1,那么{i,j}是最优解
这样做下去,可以O(nm)出解
特别说明,无解情况只会是最大的f[]值小于L,否则一定有解
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m,a[],f[];
int main()
{int i,j,l,last;
cin>>n;
for (i=;i<=n;i++)
scanf("%d",&a[i]);
for (i=n;i>=;i--)
{
f[i]=;
for (j=i+;j<=n;j++)
if (a[i]<a[j]) f[i]=max(f[i],f[j]+);
}
cin>>m;
for (i=;i<=m;i++)
{
scanf("%d",&l);
last=-;
for (j=;j<=n;j++)
{
if (f[j]>=l&&a[j]>last)
{
printf("%d ",a[j]);
l--;
last=a[j];
if (l==) break;
}
}
if (l)
printf("Impossible\n");
else printf("\n");
}
}

[HAOI2007]上升序列的更多相关文章

  1. BZOJ 1046: [HAOI2007]上升序列 LIS -dp

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Stat ...

  2. 【BZOJ 1046】 1046: [HAOI2007]上升序列

    1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < ...

  3. 【BZOJ】1046 : [HAOI2007]上升序列

    1046: [HAOI2007]上升序列 题意:给定S={a1,a2,a3,…,an}问是否存在P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且 ...

  4. Bzoj 1046: [HAOI2007]上升序列 二分,递推

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3671  Solved: 1255[Submit][Stat ...

  5. BZOJ 1046: [HAOI2007]上升序列(LIS)

    题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小. ----------------------------------- ...

  6. bzoj 1046 : [HAOI2007]上升序列 dp

    题目链接 1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3620  Solved: 1236[Submit] ...

  7. BZOJ 1046: [HAOI2007]上升序列【贪心+二分状态+dp+递归】

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4987  Solved: 1732[Submit][Stat ...

  8. 【BZOJ1046】[HAOI2007]上升序列

    [BZOJ1046][HAOI2007]上升序列 题面 bzoj 洛谷 题解 \(dp\)完之后随便搞一下即可,注意不要看错题 代码 #include <iostream> #includ ...

  9. BZOJ1046 [HAOI2007]上升序列 【LIS + 字典序最小】

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 5410  Solved: 1877 [Submit][St ...

  10. 1046: [HAOI2007]上升序列(dp)

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4999  Solved: 1738[Submit][Stat ...

随机推荐

  1. 项目Alpha冲刺Day8

    一.会议照片 二.项目进展 1.今日安排 前端界面框架基本完成,剩下侧边栏与权限相关部分未完成.前端路由异常拦截完成.项目结构与开发流程规定完成.后台开发规定小变更. 2.问题困难 组件的拆分与否和组 ...

  2. MySQL的小Tips

    交集和差集 MySQL中没有这两个运算,但是有并集运算,所以可以利用这个来间接实现. 差集: SELECT ID FROM ( SELECT DISTINCT A.AID AS ID FROM TAB ...

  3. nyoj 对决

    对决 时间限制:1000 ms  |  内存限制:65535 KB 难度:0   描述 Topcoder 招进来了 n 个新同学,Yougth计划把这个n个同学分成两组,要求每组中每个人必须跟另一组中 ...

  4. Mego开发文档 - 数据属性生成值

    数据属性生成值 该功能用于在数据插入或更新时为指定属性生成期望的值,Mego提供了非常灵活的实现方式以满足各种数据提交时的自动赋值问题. 生成值目的及模式 在Mego中生成值的目的一定是插入数据或更新 ...

  5. angular2 学习笔记 ( translate, i18n 翻译 )

    更新 : 2017-06-17 <h1 i18n="site header|An introduction header for this sample">Hello ...

  6. spring5——Aop的实现原理(动态代理)

    spring框架的核心之一AOP,面向切面编程是一种编程思想.我对于面向切面编程的理解是:可以让我们动态的控制程序的执行流程及执行结果.spring框架对AOP的实现是为了使业务逻辑之间实现分离,分离 ...

  7. Django中ORM介绍和字段及其参数

    ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过使用描述 ...

  8. jenkins配置findbugs失败---不要随便忽略警告!一个因为文件所有权引发的血案

    一:背景交代 这两天组长让我这边搭一个持续集成环境.梳理了需求后,因为我们的项目都是maven项目,所以我选择了jenkins+外置maven(区别于直接从jenkins里面安装)的方案.(cento ...

  9. Orm之中介模型

    什么是中介模型 中介模型针对的是ManyToMany(多对多)的时候第三张表的问题, 中介模型其实指的就是我们不通过Django创建第三张表,如果自己不创建第三张表,而是由django给我们创建,那就 ...

  10. Java练习(模拟扫雷游戏)

    要为扫雷游戏布置地雷,扫雷游戏的扫雷面板可以用二维int数组表示.如某位置为地雷,则该位置用数字-1表示, 如该位置不是地雷,则暂时用数字0表示. 编写程序完成在该二维数组中随机布雷的操作,程序读入3 ...