Description

  对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax
2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给
出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先
x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

  第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M
行每行一个数L,表示要询问长度为L的上升序列。N<=10000,M<=1000

Output

  对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.

Sample Input

6
3 4 1 2 3 6
3
6
4
5

Sample Output

Impossible
1 2 3 6
Impossible
注意是编号的字典序最小
那么从前往后dp就会出现这样的情况
就是不知道如何选才能保证长度为L的最优解且字典序最小(特别的是f[i]>L时)
可以从后往前DP,f[i]表示i开头的最长上升序列长度
如果存在最小的i,f[i]>=L,那么显然i是一个解
同样,存在最小的j,f[j]>=L-1,那么{i,j}是最优解
这样做下去,可以O(nm)出解
特别说明,无解情况只会是最大的f[]值小于L,否则一定有解
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m,a[],f[];
int main()
{int i,j,l,last;
cin>>n;
for (i=;i<=n;i++)
scanf("%d",&a[i]);
for (i=n;i>=;i--)
{
f[i]=;
for (j=i+;j<=n;j++)
if (a[i]<a[j]) f[i]=max(f[i],f[j]+);
}
cin>>m;
for (i=;i<=m;i++)
{
scanf("%d",&l);
last=-;
for (j=;j<=n;j++)
{
if (f[j]>=l&&a[j]>last)
{
printf("%d ",a[j]);
l--;
last=a[j];
if (l==) break;
}
}
if (l)
printf("Impossible\n");
else printf("\n");
}
}

[HAOI2007]上升序列的更多相关文章

  1. BZOJ 1046: [HAOI2007]上升序列 LIS -dp

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Stat ...

  2. 【BZOJ 1046】 1046: [HAOI2007]上升序列

    1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < ...

  3. 【BZOJ】1046 : [HAOI2007]上升序列

    1046: [HAOI2007]上升序列 题意:给定S={a1,a2,a3,…,an}问是否存在P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且 ...

  4. Bzoj 1046: [HAOI2007]上升序列 二分,递推

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3671  Solved: 1255[Submit][Stat ...

  5. BZOJ 1046: [HAOI2007]上升序列(LIS)

    题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小. ----------------------------------- ...

  6. bzoj 1046 : [HAOI2007]上升序列 dp

    题目链接 1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3620  Solved: 1236[Submit] ...

  7. BZOJ 1046: [HAOI2007]上升序列【贪心+二分状态+dp+递归】

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4987  Solved: 1732[Submit][Stat ...

  8. 【BZOJ1046】[HAOI2007]上升序列

    [BZOJ1046][HAOI2007]上升序列 题面 bzoj 洛谷 题解 \(dp\)完之后随便搞一下即可,注意不要看错题 代码 #include <iostream> #includ ...

  9. BZOJ1046 [HAOI2007]上升序列 【LIS + 字典序最小】

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 5410  Solved: 1877 [Submit][St ...

  10. 1046: [HAOI2007]上升序列(dp)

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4999  Solved: 1738[Submit][Stat ...

随机推荐

  1. vue计算属性详解——小白速会

    一.什么是计算属性 模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.例如: <div id="example"> ...

  2. 201621123057 《Java程序设计》第1周学习总结

    1.本周学习总结 .java - - 源程序 .class - - 字节码文件 JVM - - 虚拟机 JRE - - 执行环境 JDK - - 开发工具包 其中,运行的是.class,而非.java ...

  3. python自动发邮件

    from email.header import Header from email.mime.text import MIMEText from email.utils import parsead ...

  4. DES MEI号码加密

    对于加密来说,使用DES加密解密很好,但是为了使不同设备的密文不一样,可以使用 固定字符串 + 设备IMEI号码 加密的方式,这样可以分辨不同手机,限制手机的使用(若是注册,一个手机只有一个IMEI号 ...

  5. WebApi一个控制器中定义多个Get方法。

    问题:怎样解决一个ApiController中定义多个Get方法或者Post方法? 答:要想实现一个ApiController中定义多个Get方法或者Post方法,则需要在WebApiConfig类中 ...

  6. Python之旅.第三章.函数3.29

    一.无参装饰器 1 开放封闭原则 软件一旦上线后,就应该遵循开放封闭原则,即对修改源代码是封闭的,对功能的扩展是开放的 也就是说我们必须找到一种解决方案: 能够在不修改一个功能源代码以及调用方式的前提 ...

  7. hadoop大数据技术架构详解

    大数据的时代已经来了,信息的爆炸式增长使得越来越多的行业面临这大量数据需要存储和分析的挑战.Hadoop作为一个开源的分布式并行处理平台,以其高拓展.高效率.高可靠等优点越来越受到欢迎.这同时也带动了 ...

  8. Nagios监控的部署与配置

    [安装Nagios] yum install -y httpd httpd-devel httpd-tools mysql mysql-devel mysql-server php php-devel ...

  9. api-gateway实践(14)前端签名密钥和后端签名密钥

    1.前端签名密钥 1.1.缓存管理初始:engine初始的时候,从redis拉取全部前端绑定关系到engine缓存.新增/绑定:绑定签名密钥和服务实例,同时缓存该关系到redis,同时缓存到engin ...

  10. spring-oauth-server实践:使用授权方式四:client_credentials 模式的客户端和服务端交互

    spring-oauth-server入门(1-11)使用授权方式四:client_credentials 模式的客戶端 一.客户端逻辑 1.界面入口(credentials_access_token ...